内容概要:本文详细介绍了3KW无线充电系统的双边LCC拓扑结构设计及其MATLAB Simulink仿真过程。系统采用750V输入电压,400V输出电压,传输功率为3KW。文中首先阐述了LCC拓扑的选择原因及其优点,接着深入探讨了参数计算方法,包括谐振频率、电感和电容的计算。随后,文章详细描述了开环控制用于启动阶段的软启动以及闭环控制通过PID调节实现的动态调整。此外,还讨论了仿真过程中遇到的问题及解决方案,如参数偏差、效率提升、负载突变应对等。最终,通过响应面法进行多目标优化,使系统在不同工况下表现出良好的性能。 适合人群:从事电力电子、无线充电系统设计的研究人员和技术人员,尤其是有一定MATLAB Simulink使用经验的工程师。 使用场景及目标:适用于研究和开发高效、稳定的无线充电系统,特别是在电动汽车无线充电领域的应用。目标是通过理论分析和仿真验证,优化系统参数,提高传输效率和稳定性。 其他说明:文中提供了详细的MATLAB代码片段和Simulink模型构建步骤,帮助读者更好地理解和实现该系统。同时,强调了实际调试中的注意事项,如参数精度、寄生参数的影响等。
2025-12-26 17:07:16 422KB
1
"LCC-LCC无线充电系统:恒流恒压闭环移相控制仿真与优化研究","LCC-LCC无线充电系统:恒流恒压闭环移相控制仿真与优化研究",LCC-LCC无线充电恒流 恒压闭环移相控制仿真 Simulink仿真模型,LCC-LCC谐振补偿拓扑,闭环移相控制 1. 输入直流电压350V,负载为切电阻,分别为50-60-70Ω,最大功率3.4kW,最大效率为93.6%。 2. 闭环PI控制:设定值与反馈值的差通过PI环节,输出控制量限幅至0到1之间,控制逆变电路移相占空比。 3. 设置恒压值350V,恒流值7A。 ,LCC-LCC无线充电; 恒流恒压闭环控制; 移相控制仿真; PI控制; 仿真模型; 效率93.6%; 输入直流电压350V; 逆变电路。,基于LCC-LCC拓扑的无线充电恒流恒压闭环控制仿真研究
2025-12-26 17:04:24 262KB
1
LCC-LCC无线充电系统的恒流恒压闭环移相控制仿真模型及其优化方法。该系统基于LCC-LCC谐振补偿拓扑,利用Simulink仿真平台实现了对无线充电系统的建模与控制。文中具体阐述了系统的输入参数(如350V直流电压)、负载情况(50-70Ω切换电阻),以及最大功率和效率的表现。重点讨论了闭环PI控制策略的应用,通过设定值与反馈值的差值计算,经由PI环节处理后输出控制量,进而调整逆变电路的移相占空比,确保输出电压和电流的稳定性。此外,还设定了恒压值350V和恒流值7A,使系统能够在不同负载条件下维持稳定输出。最后,提供了部分Matlab代码片段展示PI控制器的工作流程。 适合人群:从事电力电子、控制系统设计的研究人员和技术人员,尤其是关注无线充电技术和Simulink仿真的专业人士。 使用场景及目标:适用于希望深入了解LCC-LCC无线充电系统内部机制的人群,旨在帮助他们掌握恒流恒压闭环移相控制的具体实现方法,提升对无线充电技术的理解和应用能力。 其他说明:文章不仅涵盖了理论分析,还包括具体的仿真模型构建步骤和代码实例,有助于读者更好地理解和复现实验结果。
2025-12-26 17:01:45 515KB
1
内容概要:本文详细介绍了LCC-LCC无线充电系统的恒流/恒压闭环移相控制仿真模型。该系统基于LCC-LCC谐振补偿拓扑,利用Simulink进行建模和仿真。系统输入直流电压为350V,负载为可切换电阻(50-70Ω),最大功率达3.4kW,最高效率为93.6%。文中重点讨论了闭环PI控制策略,通过PI控制器调整逆变电路的移相占空比,确保输出电压和电流的精确控制。此外,还设定了恒压值350V和恒流值7A,使系统能在不同负载条件下保持稳定输出。文中提供了部分MATLAB代码片段,展示PI控制器的工作原理及其在仿真中的应用。 适合人群:从事电力电子、控制系统设计的研究人员和技术人员,以及对无线充电技术感兴趣的工程专业学生。 使用场景及目标:适用于需要深入了解LCC-LCC无线充电系统工作原理和控制策略的研究项目,旨在提高无线充电系统的效率和稳定性。 其他说明:通过Simulink仿真模型,可以直观地了解无线充电系统的运行过程和性能表现,有助于进一步优化设计方案。
2025-11-04 17:02:03 755KB 电力电子 Simulink 无线充电 PI控制
1
无线充电系统S-S拓扑仿真模型:基于闭环控制的WPT系统,标准85k频率下稳定输出电压的调节机制,适用于Matlab Simulink与PLECS环境的研究与应用。,无线充电系统S-S拓扑仿真模型:基于闭环控制的WPT系统稳定调节与运行环境优化研究,27.无线充电系统S-S拓扑仿真模型 WPT 闭环控制,标准85k频率 均可实现输出电压的稳定调节。 运行环境为matlab simulink plecs等 ,无线充电系统; S-S拓扑仿真模型; WPT; 闭环控制; 85k频率; 输出电压稳定调节; Matlab Simulink PLECS。,无线充电系统S-S拓扑仿真模型:闭环控制下的WPT稳定输出研究
2025-06-30 02:46:34 1.61MB
1
无线充电系统中LCC-S谐振闭环控制的Simulink仿真研究与实践,LCC-S无线充电恒流恒压闭环控制仿真 Simulink仿真模型,LCC-S谐振补偿拓扑,副边buck电路闭环控制 1. 输入直流电压400V,负载为切电阻,分别为20-30-40Ω,最大功率2kW。 2. 闭环PI控制:设定值与反馈值的差通过PI环节,与三角载波比较,大于时控制MOSFET导通,小于时关断,开关频率100kHz。 3. 设置恒压值200V,恒流值5A。 ,LCC-S无线充电; 恒流恒压闭环控制; Simulink仿真模型; 谐振补偿拓扑; 副边buck电路; 开关频率; 功率。,基于LCC-S无线充电的闭环控制恒流恒压Simulink仿真模型研究
2025-05-26 08:31:43 218KB 数据仓库
1
目前市场上的电子产品层出不穷,各种电子产品的充电器也多种多样,这样既浪费资源,又不利于环保,更重要的是这些充电器不具备通用性,不方便用户的使用。日常生活中,经常会遇到手机、电脑等电量不足,急需充电的情况,而且不可能随时携带充电器,导致手机充电很麻烦。有了无线充电技术就可以在很大程度上减少这种麻烦。因此,设计基于MSP430F149的蓝牙无线充电系统,摆脱以往电线的束缚,解决电子产品充电接口不兼容的问题。该设计具有携带方便、成本低、无需布线等优势,适用于各手持移动设备以及小型用电器,不但环保并且方便了广大的用户。  1 整体方案设计  方案的主要任务是利用MCU MSP430F149 控制蓝牙模
1
提出的无线充电系统解决了传统的单线圈方案充电区域小的问题,极大的提升了用户体验。因此,本文的方案具有更高的市场价值。此外,本文增加的低功耗电路能够将待机功耗从300 mW 降到90 mW,能够更好的满足一些低功耗设备的需求。
2023-03-20 14:17:20 102KB 无线充电 低功耗 MSP430 电路原理图
1
近些年人们对磁耦合谐振式无线充电电能传输的研究相当火热,传统的电路拓扑结构的研究已经相当地完善,本文基于较为新颖的LCC-P电路拓扑结构展开研究,依据电路相关理论推导出了系统传输效率的表达式。通过ANSYS Maxwell仿真软件,建立了线圈模型,分析了线圈参数,再将模型导入ANSYS Simplorer仿真软件,对磁耦合谐振式无线电能传输系统进行联合仿真。结果表明:电能传输效率随着负载的增大而减小;随着发射端串联谐振电感的增大而增大,且变化趋势较明显。仿真实验验证了理论的正确性。
1
基于STM32的电动小车动态无线充电系统.pdf
2022-10-18 19:10:26 2.06MB
1