时间序列异常检测 该存储库包含Sanket Mishra,Varad Kshirsagar,Rohit Dwivedula和Chittaranjan Hota题为“基于注意力的Bi-LSTM用于时间序列数据异常检测”的论文的开源代码。 型号图 * 提议的模型与现有和先前的最新模型的比较 根据平均F分数: 数据集 我们的模型 深度防盗 工作组 AdVec 天际线 NumentaTM 努门塔 KNN CAD HTM Java 人工无异常 0 0 0 0 0 0 0 0 0 人工的异常 0.402 0.156 0.013 0.017 0.043 0.017 0.012 0.003 0.017 realAdExchange 0.214 0.132 0.026 0.018 0.005 0.035 0.040 0.024 0.034
2021-11-17 14:35:03 3.7MB Python
1
Curve:时序数据异常标记工具。Curve是由百度和清华大学联合推出的一款开源工具,用于帮助开发者标记时序数据中的异常。标签数据(也就是真实有效值)对于评估时序数据异常检测方法非常有必要。否则,我们无法轻松选择好检测方法,或者确定模型A好于模型B。Curve能让开发者在上面使用强大的自定义函数,高效标记数据。
2021-04-24 13:37:50 749KB Python开发-机器学习
1
纽约地区从2014年7月1日到2015年1月31日的出租车需求
2021-01-28 04:55:42 260KB 时间序列的异常检测。
1