内容概要:本文详细介绍如何使用Python实现免疫遗传算法(IGA)来求解经典的旅行商问题(TSP)。文章首先介绍了TSP问题的定义、复杂性及其在物流、路径规划等领域的广泛应用;随后讲解了遗传算法(GA)的基本原理及其在TSP中的应用,并指出其易早熟收敛的缺陷;接着引入免疫算法(IA),阐述其通过免疫记忆和调节机制增强搜索能力的优势;在此基础上,提出将两者融合的免疫遗传算法,通过接种疫苗、免疫选择、克隆变异等机制有效提升解的质量与收敛速度。文中给出了完整的Python实现步骤,包括城市数据生成、距离矩阵计算、适应度函数设计、免疫与遗传操作的具体代码,并通过可视化展示最优路径和适应度曲线,最后对结果进行分析并提出参数调优与算法改进方向。; 适合人群:具备Python编程基础、了解基本算法与数据结构的高校学生、算法爱好者及从事智能优化相关工作的研发人员;尤其适合对启发式算法、组合优化问题感兴趣的学习者。; 使用场景及目标:①掌握免疫遗传算法解决TSP问题的核心思想与实现流程;②学习如何将生物免疫机制融入传统遗传算法以克服早熟收敛问题;③通过完整代码实践理解算法各模块的设计逻辑,并可用于课程设计、科研原型开发或实际路径优化项目参考;④为进一步研究混合智能算法提供基础框架。; 阅读建议:建议读者结合代码逐段理解算法实现过程,动手运行并调试程序,尝试调整种群大小、变异率、交叉率等参数观察对结果的影响,同时可扩展疫苗策略或引入局部搜索等优化手段以加深理解。
2025-12-18 14:45:58 196KB Python 免疫遗传算法 TSP问题 组合优化
1
内容概要:本文介绍了基于Matlab实现的无人机在时变风环境下路径跟随策略的模拟研究,重点探讨了无人机在动态风场干扰下的轨迹跟踪控制方法。通过建立无人机动力学模型与时变风场模型,结合控制算法实现对期望路径的精确跟随,并利用Matlab进行仿真验证,分析无人机在不同风扰条件下的响应特性与控制性能。该研究对于提升无人机在复杂气象环境中的飞行稳定性与任务执行能力具有重要意义。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的高校研究生、科研人员及从事无人机控制系统开发的工程技术人员。; 使用场景及目标:①研究无人机在真实气象环境下的路径跟踪控制策略;②开发抗干扰能力强的飞行控制系统;③通过仿真验证控制算法的有效性与鲁棒性; 阅读建议:建议读者结合Matlab代码深入理解仿真流程,重点关注风场建模与控制器设计部分,可在此基础上扩展其他先进控制算法(如自适应控制、滑模控制)进行对比研究。
1
基于多需求与冷链物流的车辆路径优化算法研究:融合遗传算法与多种智能优化技术,路径规划vrp,遗传算法车辆路径优化vrptw,MATLAB,带时间窗及其他各类需求均可,基于车辆的带时间窗的车辆路径优化VRPTW问题。 冷链物流车辆路径优化,考虑充电桩车辆路径evrp,多配送中心车辆路径优化,冷链物流车辆路径。 改进遗传算法车辆路径优化,蚁群算法粒子群算法,节约算法,模拟 火算法车辆路径优化。 完整代码注释 ,关键词: 1. 路径规划VRP 2. 遗传算法 3. 车辆路径优化VRPTW 4. MATLAB 5. 带时间窗 6. 各类需求 7. 冷链物流 8. 充电桩车辆路径evrp 9. 多配送中心 10. 改进遗传算法 11. 蚁群算法 12. 粒子群算法 13. 节约算法 14. 模拟退火算法 15. 完整代码注释 用分号分隔每个关键词为:路径规划VRP;遗传算法;车辆路径优化VRPTW;MATLAB;带时间窗;各类需求;冷链物流;充电桩车辆路径evrp;多配送中心;改进遗传算法;蚁群算法;粒子群算法;节约算法;模拟退火算法;完整代码注释;,基于多需求与冷链物流的车辆路径优化算法研究
2025-11-16 10:22:54 1.17MB csrf
1
内容概要:本文介绍了基于模型预测控制(MPC)的微电网调度优化方法,并提供了相应的Matlab代码实现。文中还涉及多种优化算法和技术在不同工程领域的应用,如改进引导滤波器、扩展卡尔曼滤波器、多目标向日葵优化算法(MOSFO)、蛇优化算法(MOSO)等,重点聚焦于微电网多目标优化调度问题。通过MPC方法对微电网中的能源进行动态预测与优化调度,提升系统运行效率与稳定性,同时应对分布式电源不确定性带来的挑战。配套代码便于读者复现与验证算法性能。; 适合人群:具备一定电力系统或自动化背景,熟悉Matlab编程,从事新能源、智能优化或微电网相关研究的科研人员及研究生;; 使用场景及目标:①实现微电网在多目标条件下的优化调度;②处理分布式电源不确定性对配电网的影响;③学习并应用MPC控制策略于实际能源系统调度中;④对比分析不同智能优化算法在路径规划、调度等问题中的表现; 阅读建议:建议结合提供的Matlab代码与网盘资料,按主题逐步实践,重点关注MPC在微电网中的建模过程与优化机制,同时可拓展至其他智能算法的应用场景。
1
基于DQN算法强化学习的主动悬架系统控制:质心加速度与悬架动态性能的智能优化及Matlab代码实现与对比分析,智能体Agent输入DQN算法强化学习控制主动悬架,出DQN算法强化学习控制的主动悬架 质心加速度 悬架动绕度 轮胎位移作为智能体agent的输入 搭建了悬架的空间状态方程 可以运行 效果很好 可以与pid控制进行对比 可带强化学习dqn的Matlab代码 有详细的介绍 可供学习 ,DQN算法; 强化学习控制; 主动悬架; 质心加速度; 悬架动绕度; 轮胎位移; 智能体agent输入; 空间状态方程; 运行效果对比; PID控制对比; Matlab代码; 详细介绍。,强化学习DQN算法控制主动悬架:系统效果详解与代码实例
2025-08-29 08:51:34 4.87MB 哈希算法
1
内容概要:本文详细介绍了如何结合麻雀搜索算法(SSA)与极限学习机(ELM),利用MATLAB实现了优化的分类预测模型,并提供了相关模型描述及示例代码。文章首先讨论了ELM的独特之处及其存在的局限性,接着阐述了SSA的基本原理以及它如何协助优化ELM的表现。随后提出了SSA-ELM混合模型的设计思路和技术创新点。最后展示了此模型的应用领域,包括但不限于图像分类、医疗诊断、金融预测、文本分类及智能制造。文中还给出了具体的编程实现方法和技术细节,有助于科研人员理解并复现实验结果。 适合人群:对优化算法及机器学习感兴趣的学者或从业者;从事数据科学、自动化等相关行业的研究人员和技术开发人员。 使用场景及目标:适用于处理大型复杂数据集的任务;目标在于改善现有ELM在处理非线性和高维数据方面的能力不足问题,同时为其他机器学习方法提供改进方向。 其他说明:附带了完整的源码,便于使用者直接运行测试案例,方便教学与研究;此外还涉及了一些有关模型评估的内容,例如如何避免过度拟合等。这使文献既具有理论参考价值又兼备实际操作指南的功能。
1
海象优化器(Walrus Optimizer)是一种新颖的全局优化算法,主要应用于解决复杂的多模态优化问题。在各类智能优化算法中,如遗传算法、粒子群优化、模拟退火等,它们的基本结构原理相似,都是通过模拟自然界中的某种过程来搜索最优解。然而,海象优化器的独特之处在于其迭代公式,这是它能在众多优化算法中脱颖而出的关键。 在海象优化器的设计中,借鉴了海象在捕食过程中的行为模式。海象在寻找食物时,不仅依赖于随机搜索,还会利用当前最优解的信息进行有目标的探索。这种策略在算法中体现为结合全局和局部搜索能力的迭代更新规则。 以下是海象优化器的主要组成部分及其工作原理: 1. **初始化**:`initialization.m` 文件通常包含了算法的初始化步骤,如设置参数、生成初始种群等。初始阶段,算法会随机生成一组解(也称为个体或代理),这些解将代表潜在的解决方案空间。 2. **海象运动模型**:在`WO.m`文件中,我们可以找到海象优化器的核心算法实现。海象的运动模型包括两种主要行为:捕食和社交。捕食行为是基于当前最优解进行局部探索,而社交行为则涉及到与其他个体的交互,以促进全局搜索。 3. **迭代更新**:每次迭代中,海象优化器会根据海象的捕食和社交行为调整解的坐标。这通常涉及一个迭代公式,该公式可能包含当前解、最优解、以及一些随机成分。迭代公式的设计确保了算法既能保持对全局最优的敏感性,又能有效地跳出局部极小值。 4. **评价函数**:在`Get_Functions_details.m`文件中,可能会定义用于评估每个解的适应度的函数。这个函数根据问题的具体目标(最小化或最大化)计算每个解的质量。 5. **停止条件**:算法的运行直到满足特定的停止条件,如达到最大迭代次数或适应度阈值。`main.m`文件通常包含了整个优化过程的主循环和这些条件的判断。 6. **辅助函数**:`levyFlight.m`和`hal.m`可能包含一些辅助函数,如莱维飞行(Levy Flight)或哈喇(Hal)步,它们用来引入长距离跳跃以提高全局搜索能力。 7. **许可证信息**:`license.txt`文件包含算法的使用许可条款,确保用户在合法范围内使用和修改代码。 了解这些基本概念后,开发者可以依据MATLAB编程环境实现海象优化器,并将其应用到实际的优化问题中,如工程设计、经济调度、机器学习参数调优等领域。通过理解和掌握迭代公式以及算法的各个组件,可以灵活地调整算法参数,以适应不同问题的特性,从而提升优化效率和精度。
2025-05-28 09:10:50 7KB MATLAB
1
MATLAB光伏发电系统仿真模型:基于PSO算法的静态遮光光伏MPPT仿真及初级粒子群优化应用,MATLAB环境下基于PSO算法的静态遮光光伏MPPT仿真模型:智能优化算法与基础粒子群控制的应用研究,MATLAB光伏发电系统仿真模型,智能优化算法PSO算法粒子群算法控制的静态遮光光伏MPPT仿真,较为基础的粒子群光伏MPPT,适合初始学习 ,MATLAB; 光伏发电系统仿真模型; 智能优化算法; PSO算法; 粒子群算法; 静态遮光; MPPT仿真; 基础学习。,初探MATLAB粒子群算法优化光伏MPPT仿真实验基础指南
2025-05-23 00:43:13 64KB
1
在这个CUG智能优化课设中,学生通过Python编程语言实现了著名的多目标优化算法NSGA-Ⅱ(非支配排序遗传算法第二代),以此来解决CEC-2021(国际计算智能挑战赛)中的复杂优化问题。NSGA-Ⅱ是一种在遗传算法基础上发展起来的高效优化工具,尤其适用于解决多目标优化问题,这些问题通常涉及到多个相互冲突的目标函数,需要找到一组最优解,而非单一的全局最优解。 **NSGA-Ⅱ算法详解** NSGA-Ⅱ的核心思想是基于非支配排序和拥挤距离的概念来寻找帕累托前沿,这是多目标优化问题中的理想解集。算法通过随机生成初始种群,然后进行以下步骤: 1. **选择操作**:NSGA-Ⅱ采用“锦标赛选择”策略,通过比较个体间的适应度值来决定保留哪些个体。适应度值是根据个体在所有目标函数上的表现计算得出的。 2. **交叉操作**:通过“均匀交叉”或“部分匹配交叉”等策略,将两个父代个体的部分基因片段交换,生成新的子代。 3. **变异操作**:应用“位翻转变异”或“区间变异”等方法,对个体的某些基因进行随机改变,增加种群多样性。 4. **非支配排序**:对所有个体进行两两比较,根据是否被其他个体支配,分为不同层级的 fronts。第一层front的个体是最优的,后面的front依次次优。 5. **拥挤距离计算**:在相同层级的front中,为了保持种群多样性,引入拥挤距离指标,衡量个体在目标空间中的分布情况。 6. **精英保留策略**:确保最优解能够传递到下一代,避免优良解的丢失。 7. **新一代种群构建**:结合非支配排序结果和拥挤距离,采用快速解拥挤策略选择最优子代进入下一代种群。 8. **迭代与终止条件**:重复上述步骤,直到达到预设的迭代次数或满足其他停止条件。 **CEC-2021竞赛介绍** CEC(Competition on Evolutionary Computation)是由国际计算智能学会(IEEE Computational Intelligence Society)组织的年度挑战赛,旨在推动计算智能领域的研究和应用。CEC-2021可能包含多个复杂优化问题,如多目标优化、单目标优化、动态优化等,这些问题通常具有高维度、非线性、多模态和不连续的特性。参赛者需要设计和实现优化算法,对这些问题进行求解,评估算法的性能和效率。 通过这个课设,学生不仅能够深入理解NSGA-Ⅱ算法的原理和实现细节,还能通过实际问题的解决,提高解决复杂优化问题的能力。同时,这也为他们提供了参与高水平竞赛的机会,进一步提升其在计算智能领域的研究水平。
2025-05-19 15:35:46 969KB python
1
内容概要:本文详细介绍了一个利用MATLAB实现的遗传算法(GA)优化BP神经网络的方法,专门面向多输入多输出系统的建模和预测任务。遗传算法以其全局搜索能力解决了BP神经网络容易陷入局部最优的问题,两者结合大大提升了学习速度和精度。文中阐述了BP神经网络和遗传算法的基本原理,并介绍了两者相结合的技术细节及其在MATLAB平台上的实现方式。特别指出的是,在实现过程中遇到了一些技术和理论上的挑战,并通过合理的参数调整和结构优化逐一攻克。 适合人群:具备基本编程技能以及对人工神经网络有一定了解的研究人员、工程师和技术爱好者,特别是关注于复杂系统和大数据分析的专业人士。 使用场景及目标:主要用于需要高效建模及精确预测的复杂多维系统中,比如系统控制、金融数据分析、医学诊断、图像识别等众多行业领域内的问题解决。目的是提高系统的自动化程度,改善预测准确率,并促进更广泛的智能化管理和服务应用。 其他说明:为了帮助读者更好地理解这一过程,文档还提供了详细的模型架构图示和具体的实例编码指导,从数据准备到最终的仿真结果显示全过程。并且强调了项目所具有的创新点,比如自定义参数设定、智能优化初始权重等特性,使得该方案在实际操作中有较强的灵活性和适用性。同时指出未来可以进一步探索更多元化的优化手段和技术融合可能性。
2025-04-05 09:07:05 32KB 遗传算法 BP神经网络 MATLAB 智能优化
1