本文详细介绍了连续体机器人的正逆向运动学模型,重点讲解了DH参数法和雅可比矩阵的应用。首先概述了传统机器人中使用的DH参数法和雅可比矩阵,然后详细阐述了如何利用DH参数法解决机器人的正向运动学问题,以及如何利用雅可比矩阵的伪逆迭代解决逆向运动学问题。文章还讨论了连续体机器人的建模思路,指出虽然连续体机器人没有固定关节,但可以通过拟合虚拟关节来应用类似的建模方法。最后,文章提供了具体的DH参数矩阵和雅可比矩阵的构建方法,并预告了下一章节将应用DH参数法对连续体机器人的正向运动进行建模。 连续体机器人运动学模型的构建是机器人学领域内的一个研究热点,尤其在处理无固定关节的机器人结构时显得尤为重要。运动学模型主要涉及机器人的运动描述和分析,包括正向运动学和逆向运动学两个方面。正向运动学指的是在已知机器人各个关节变量的情况下,计算机器人末端执行器的位置和姿态;逆向运动学则是在已知机器人末端执行器位置和姿态的前提下,求解各个关节变量的值。 DH参数法,即Denavit-Hartenberg参数法,是一种广泛应用于机器人运动学建模的方法。它通过引入四个参数——连杆偏距、连杆扭角、连杆长度和关节转角——来描述相邻两个关节轴之间的关系。对于连续体机器人而言,尽管其结构柔性且没有传统意义上的固定关节,但是通过设定虚拟关节,可以将连续体离散化处理,使得DH参数法同样适用。 雅可比矩阵是运动学中描述机器人末端速度和关节速度之间关系的矩阵,它在连续体机器人的逆向运动学问题中扮演着至关重要的角色。逆向运动学的求解通常需要通过迭代算法来实现,雅可比矩阵的伪逆提供了一种有效的解决方案,它能够提供关节速度与末端执行器速度之间的映射关系。 连续体机器人的建模过程比较复杂,因为其结构的连续性给传统建模方法带来了挑战。文章指出,连续体机器人建模的关键在于如何合理地定义虚拟关节以及如何通过DH参数法来表示这些虚拟关节之间的相对运动关系。 在文章的作者介绍了如何构建具体的DH参数矩阵和雅可比矩阵。通过设定连续体机器人各段的虚拟关节,可以使用DH参数法来构建出一个离散化的模型。接着,根据这些虚拟关节和它们的运动关系,可以推导出雅可比矩阵。雅可比矩阵的构建是理解机器人运动学和进行运动控制的基础。文章还预告了下一章节将介绍如何利用DH参数法对连续体机器人的正向运动进行建模。 文章的讨论并不停留在理论层面,它还提供了实际构建这些模型的具体方法,这对于机器人工程师在设计和控制连续体机器人时具有重要的参考价值。通过这些模型,工程师能够更加精确地控制机器人的运动,实现复杂的任务。 连续体机器人的运动学模型构建是一个将理论与实践结合的过程,其中DH参数法和雅可比矩阵是解决连续体机器人正逆向运动学问题的关键工具。通过合理的建模方法和算法迭代,连续体机器人可以在无固定关节的条件下实现精准的运动控制。
1
针对纵向滑动参数未知的轮式移动机器人的轨迹跟踪问题, 提出一种自适应跟踪控制策略. 利用两个未知参 数来描述移动机器人左右轮的纵向打滑程度, 建立了产生纵向滑动的差分驱动轮式移动机器人的运动学模型; 设计 了补偿纵向滑动的自适应非线性反馈控制律; 应用Lyapunov 稳定性理论与Barbalat 定理证明了闭环系统的稳定性; 同时, 提出了一种由极点配置方法在线调整控制器增益的方法. 仿真结果验证了所提出控制方法的有效性.
1
常见移动机器人运动学模型总结,关注“混沌无形”公号,获取免费资源
2021-08-06 13:03:35 621KB 运动学模型 移动机器人
1
本文分析麦克纳姆轮全向移动机器人运动模型及应用,在“混沌无形”免费下载本文PDF
1