基于各种机器学习和深度学习的中文微博情感分析 项目说明 训练集10000条语料, 测试集500条语料 使用朴素贝叶斯、SVM、XGBoost、LSTM和Bert, 等多种模型搭建并训练二分类模型 前3个模型都采用端到端的训练方法 LSTM先预训练得到Word2Vec词向量, 在训练神经网络 Bert使用的是哈工大的预训练模型, 用Bert的[CLS]位输出在一个下游网络上进行finetune。预训练模型 在现代信息社会,随着社交媒体的兴起,大量的用户生成内容需要被有效分析和理解。中文微博作为其中最具代表性的社交平台之一,其上的文本数据蕴含着丰富的情感信息。对这些数据进行情感分析,不仅能帮助企业理解公众情绪,还能辅助政府相关部门进行舆情监控。因此,本项目旨在开发一种基于机器学习和深度学习技术的情感分析工具,专注于中文微博文本的情感倾向判断。 项目的核心是构建一个二分类模型,以识别和分类微博文本所表达的情感是积极的还是消极的。为了实现这一目标,研究者们采用了多种先进的机器学习算法和深度学习模型。具体来说,包括了朴素贝叶斯、支持向量机(SVM)、梯度提升决策树(XGBoost)、长短期记忆网络(LSTM)以及基于变换器的预训练语言模型Bert。 在训练这些模型之前,研究团队收集和准备了10000条标注好的中文微博语料作为训练集,并准备了500条语料作为测试集。这些语料来自不同的微博话题和用户群体,保证了样本的多样性和代表性。 朴素贝叶斯是一种基于概率理论的简单分类方法,它假设特征之间相互独立,通过计算条件概率来预测最可能的分类。尽管它的假设在现实中往往不成立,但它在许多实际问题中显示出了良好的性能。 SVM是一种有监督的学习模型,主要思想是找到一个最优的超平面,将不同类别的数据分开。它通过最大化类之间的边界来提高分类的准确性,特别适合处理非线性问题。 XGBoost是一种高效的梯度提升决策树算法,它通过建立多个决策树并迭代地优化目标函数,从而提高预测的准确性和鲁棒性。XGBoost的优势在于其对稀疏数据的处理能力和高效的计算速度。 LSTM是一种特殊的循环神经网络(RNN),能够捕捉长距离依赖关系。在这个项目中,LSTM模型首先使用未标注的大量微博语料进行预训练,从而学习到丰富的语言特征和上下文信息。随后,研究者们使用这些预训练得到的Word2Vec词向量来训练一个特定的神经网络,以进行情感分类。 Bert(Bidirectional Encoder Representations from Transformers)是一种基于变换器的预训练语言表示模型,能够通过上下文双向地学习到词、句乃至段落的深层次语义信息。在这个项目中,研究者们采用了哈工大预训练的Bert模型,并在其基础上通过finetune的方式进行微调,使得模型更好地适应中文微博情感分析的任务。 本项目的实施不仅有助于推动中文自然语言处理技术的发展,还能够为相关领域的研究者和从业者提供宝贵的参考和工具。通过深入分析微博平台上的海量文本数据,该情感分析工具能够揭示公众对特定事件或产品的情感倾向,为企业营销、公共关系、甚至是政策制定提供数据支持和决策依据。 由于中文的语义复杂性和表达多样性,对中文微博文本进行情感分析是一项挑战性工作。项目中所采用的多种机器学习和深度学习模型的组合策略,不仅提高了分析的准确性,也展现了不同模型在处理中文文本方面的优势和局限。通过对模型结果的综合评价,研究者们还可以进一步优化和改进情感分析算法,为未来的研究工作奠定基础。 此外,本项目也突显了预训练模型在自然语言处理中的重要性。通过对预训练模型的有效利用,即使是面对计算资源有限的场景,也能够实现高性能的情感分析。这表明预训练模型正在成为处理自然语言任务的重要工具,尤其在数据量和计算能力受限的情况下,其价值尤为显著。 本项目为中文微博情感分析提供了一套完整的解决方案,通过先进的机器学习和深度学习技术,能够高效准确地处理和分析社交媒体上的大量文本数据。该研究不仅具有重要的学术价值,还具有广泛的应用前景和实用价值。随着技术的不断进步和数据量的不断增长,这一领域无疑将吸引更多研究者和从业者的关注,未来的进步值得期待。
1
python基础、机器学习、深度学习代码
2025-06-15 19:31:14 11.13MB
1
房价预测系统是一种利用机器学习或深度学习技术对房地产市场价格进行预测的系统。这类系统通常基于大量的历史房价数据,通过构建预测模型,来推算未来或未经交易的房产价格。本压缩包包含了完整的代码和数据,可用于实际应用开发或学习研究。 在本压缩包中,我们能找到包含实际交易数据的文件,例如“房价数据.csv”和“anjuke_house_prices.csv”,这些文件中包含了不同房产的特征数据如位置、面积、建造年份以及成交价格等,是构建房价预测模型的重要依据。此外,还包含了一些模型文件,如“knn_model.pkl”,这表明使用了k-最近邻算法(K-Nearest Neighbors, KNN)构建的预测模型,而“BP_NN_Prediction_vs_True.png”和“knn_Prediction_True.png”则可能是展示了不同模型预测结果与实际成交价格的对比图像,帮助我们评估模型的准确性。 “BP_NN_Loss.png”文件则可能展示了使用了反向传播算法的神经网络(Back Propagation Neural Network, BP NN)在训练过程中的损失值变化,这有助于分析模型在学习过程中的表现,从而对模型进行优化。另外,代码文件“房价预测新版.py”可能是主要的预测脚本,用于执行预测任务和输出结果。而“对比实验-逻辑回归.py”和“对比试验-随机森林.py”则是对不同机器学习算法进行测试和比较的脚本,通过这些对比可以了解不同算法在房价预测任务中的优势和局限性。 此压缩包提供了一套完整的房价预测系统开发资源,包括数据集、模型文件、可视化图表和源代码,适用于机器学习和深度学习的研究和实践。通过这些资源,开发者不仅可以深入理解房价预测问题,还能够学习到如何使用机器学习方法解决实际问题,特别是如何在处理回归问题时选择合适的模型,以及如何评估和比较不同模型的性能。
2025-06-13 13:31:40 452KB 房价预测 机器学习 深度学习
1
机器学习练习-6-MLP和 7 - LSTM数据集
2025-05-22 16:16:49 6KB 机器学习 深度学习
1
通过label 1.8.6编译生成在windows上可以运行的exe 博客地址:https://blog.csdn.net/yohnyang/article/details/145692283?spm=1001.2014.3001.5501 在深度学习和机器学习领域,目标检测是一项重要的任务,它旨在识别图像中的特定目标并定位其位置。随着技术的发展,出现了许多工具和软件来辅助研究人员和工程师进行目标检测的研究和应用开发。其中,LabelImg是一款广泛使用的图像标注工具,它可以帮助用户为训练数据集进行目标标注。通常情况下,LabelImg使用Python编写,但为了方便Windows系统的用户使用,一些开发者会将其编译成Windows可执行的exe文件。 本篇文章将介绍一个由LabelImg编译而成的目标检测工具,该工具是针对Windows操作系统优化的版本。具体来说,这个版本经过了特定的编译过程,使得用户无需安装Python环境或者配置复杂的开发环境即可直接在Windows系统上运行。这对于那些不熟悉编程环境设置的用户来说,无疑降低了使用门槛,极大地提高了工作效率和便利性。 这个工具的编译版本基于LabelImg 1.8.6,这是一个稳定的版本号,意味着它在功能和性能上已经得到了充分的测试和验证。用户可以通过上述提供的博客链接了解详细的编译过程和使用方法。博客中不仅介绍了如何生成可直接在Windows上运行的目标检测工具,还可能包含了一些使用技巧、常见问题解决方法以及优化建议等,为用户提供了一个全面的学习资源。 通过这个工具,用户可以轻松地在图像中绘制边界框并为不同的目标打上标签,这为机器学习和深度学习模型的训练提供了丰富的训练数据。在此过程中,用户需要标记出图像中的车辆、行人、动物等目标,并给这些目标贴上标签。有了足够数量的标注数据之后,就可以使用深度学习算法来训练模型,使其能够准确地识别出图像中的各种对象。 这个工具的开发和应用,大大简化了目标检测任务的数据准备阶段。这对于推动机器学习和深度学习技术在各个领域的应用具有重要的意义。比如,在自动驾驶领域,准确的目标检测能够帮助汽车识别路面上的行人、交通标志和其他车辆,从而提高驾驶的安全性;在医疗图像分析领域,精确的目标检测可以帮助医生更快地定位病变区域,对病情进行更加准确的诊断。 这个针对Windows系统的“目标检测+labelimg+windows直接可用版”工具,不仅降低了技术门槛,而且加速了机器学习和深度学习算法在现实世界问题中的应用进程,特别是在目标检测这个细分领域中发挥着重要作用。它体现了技术创新如何推动行业发展,简化复杂问题解决流程,并最终为社会带来福祉。
2025-05-10 21:25:59 39.54MB 目标检测 python 机器学习 深度学习
1
花卉识别系统是一种利用计算机视觉和机器学习技术来自动识别和分类不同种类花卉的系统。该系统的核心是基于深度学习模型ResNet18的训练网络,通过图像识别技术,用户上传的花卉图片可以被准确分类。 深度学习是一种模拟人脑处理信息的方式,通过构建复杂的神经网络结构来分析数据。在花卉识别系统中,ResNet18作为卷积神经网络(CNN)的一种,擅长处理图像数据。ResNet18通过引入残差学习框架,使得网络能够训练更深的层次结构,从而获得更高效的特征提取能力。 Python是一种广泛使用的高级编程语言,它具有丰富的数据科学和机器学习库,如TensorFlow、Keras和PyTorch等。Python简洁易读的语法和强大的社区支持使其成为开发机器学习模型的理想选择。在花卉识别系统中,Python被用来编写代码、搭建模型以及与用户界面(UI)进行交互。 用户界面(UI)是用户与系统交互的前端部分,它负责展示信息并接收用户的输入。在花卉识别系统中,UI设计需要简洁直观,使得非专业人士也能轻松使用。一个好的UI不仅可以提升用户体验,还能够减少操作错误,提高系统的整体效率。 花卉识别系统的开发过程包括数据收集、预处理、模型训练、评估和部署等多个步骤。需要收集大量不同种类的花卉图片作为训练数据。接下来,对这些图片进行必要的预处理,如缩放、归一化等,以适应模型输入的要求。然后,使用ResNet18模型进行训练,并不断调整参数以优化性能。训练完成后,对模型进行评估,确保其具有良好的识别准确率。将训练好的模型部署到一个用户友好的UI中,供用户使用。 在使用花卉识别系统时,用户只需上传一张花卉图片,系统便会自动处理图片并输出识别结果,告诉用户所上传的花卉种类。这个过程主要依赖于模型的预测能力,而UI则负责展示预测结果和提供用户交互。 花卉识别系统的应用前景非常广泛,它不仅能够帮助植物学家和园艺师进行科学研究和植物养护,还能为普通爱好者提供一个学习和欣赏花卉的平台。此外,随着智能手机和移动应用的普及,基于移动设备的花卉识别应用也将成为可能,进一步扩大了系统的使用范围。 花卉识别系统通过结合深度学习模型、Python编程语言和用户友好的界面设计,为用户提供了一个高效、便捷的花卉分类工具。这个系统在教育、科研和日常生活等多个领域都具有重要的应用价值。
2025-05-04 23:14:35 245.9MB 机器学习 深度学习
1
kaggle竞赛宝典,机器学习,人工智能咨询,kaggle竞赛宝典,机器学习,人工智能咨询kaggle竞赛宝典,机器学习,人工智能咨询kaggle竞赛宝典,机器学习,人工智能咨询kaggle竞赛宝典,机器学习,人工智能咨询kaggle竞赛宝典,机器学习,人工智能咨询kaggle竞赛宝典,机器学习,人工智能咨询kaggle竞赛宝典,机器学习,人工智能咨询kaggle竞赛宝典,机器学习,人工智能咨询kaggle竞赛宝典,机器学习,人工智能咨询kaggle竞赛宝典,机器学习,人工智能咨询kaggle竞赛宝典,机器学习,人工智能咨询kaggle竞赛宝典,机器学习,人工智能咨询kaggle竞赛宝典,机器学习,人工智能咨询kaggle竞赛宝典,机器学习,人工智能咨询kaggle竞赛宝典,机器学习,人工智能咨询kaggle竞赛宝典,机器学习,人工智能咨询
2024-11-01 12:41:21 411KB kaggle AI 机器学习 深度学习
1
参加kaggle比赛的学习资料、个人笔记与代码。 包含五大机器学习与深度学习方向的项目比赛,着重于思路与代码实现。 项目包含: 泰坦尼克生还预测 即时反馈内核竞赛 IEEE-CIS欺诈检测 文本技能项目 视觉图像识别项目
2024-10-09 15:38:28 66.64MB python 课程资源 机器学习 深度学习
1
该书《Hands_On_Machine_Learning_with_Scikit_Learn_and_TensorFlow_3rd_Edition》相对于第一版,本书第三版所有代码都已从 TensorFlow 1.x 迁移到 TensorFlow 2.x,并且用更简单的 Keras 代码替换了大部分低级 TensorFlow 代码(图形,会话,特征列等)。该书是tensorflow官方网站的推荐图书之一(https://tensorflow.google.cn/resources/learn-ml/basics-of-machine-learning/?hl=zh-tw)本资源不仅有pdf,而且有配套的代码和数据。
2024-05-30 16:55:26 84.98MB tensorflow 机器学习 深度学习
1
现代机器学习 基于深度学习的图像特征提取.docx现代机器学习 基于深度学习的图像特征提取.docx现代机器学习 基于深度学习的图像特征提取.docx现代机器学习 基于深度学习的图像特征提取.docx现代机器学习 基于深度学习的图像特征提取.docx现代机器学习 基于深度学习的图像特征提取.docx现代机器学习 基于深度学习的图像特征提取.docx现代机器学习 基于深度学习的图像特征提取.docx
2024-05-23 21:49:15 108KB 机器学习 深度学习