内容概要:本文介绍了基于非线性干扰观测器的自适应滑模反演控制(SMIC)在机械臂模型中的应用。文章首先回顾了滑模控制的发展背景,指出传统滑模控制在处理非线性干扰时的不足。随后,详细阐述了SMIC的关键组成部分,包括非线性干扰观测器的设计、自适应律的制定以及滑模反演控制的具体实现。文中通过Matlab和神经网络建立了机械臂模型并进行了仿真测试,验证了SMIC的有效性和优越性。最终,作者展望了未来的研究方向,强调了SMIC在提升系统鲁棒性方面的重要意义。 适合人群:从事机器人控制、自动化工程及相关领域的研究人员和技术人员。 使用场景及目标:适用于希望深入了解机械臂控制系统设计和仿真的专业人士,旨在提高机械臂在复杂环境下的稳定性和抗干扰能力。 其他说明:本文不仅提供了理论分析,还附有详细的Matlab代码和仿真结果,便于读者理解和实践。
2025-05-20 08:51:39 1.38MB
1
六轴关节式机械臂SW详细三维模型(自重10kg,负载5kg,精度0.05mm).pdf
2025-05-19 19:15:56 71KB
1
强化学习DDPG算法在Simulink与MATLAB中的实现与应用:自适应PID与模型预测控制融合的新尝试,基于强化学习DDPG算法的自适应控制及机械臂轨迹跟踪优化研究,强化学习算法,DDPG算法,在simulink或MATLAB中编写强化学习算法,基于强化学习的自适应pid,基于强化学习的模型预测控制算法,基于RL的MPC,Reinforcement learning工具箱,具体例子的编程。 根据需求进行算法定制: 1.强化学习DDPG与控制算法MPC,鲁棒控制,PID,ADRC的结合。 2.基于强化学习DDPG的机械臂轨迹跟踪控制。 3.基于强化学习的自适应控制等。 4.基于强化学习的倒立摆控制。 ,核心关键词: 强化学习算法; DDPG算法; Simulink或MATLAB编写; MPC; 自适应PID; 模型预测控制算法; RL工具箱; 结合控制算法; 鲁棒控制; 轨迹跟踪控制; 机械臂; 倒立摆控制。,强化学习在控制系统中的应用与实现:从DDPG到MPC及PID鲁棒自适应控制
2025-05-12 15:32:12 1.78MB
1
MATLAB在机械工程和机器人学领域是一个非常重要的工具,特别是在进行机械臂的建模、仿真和控制研究时。标题“MATLAB-6轴机械臂仿真-matlab仿真资源”表明,这个压缩包文件包含了使用MATLAB进行6轴机械臂仿真所需的相关资源和脚本文件。6轴机械臂在工业应用中非常普遍,因其灵活性和可操作性高,被广泛用于精确操作和复杂的任务执行。 “6MATLABDH”可能是这个资源库的一个关键词或是某个具体功能的名称,不过从给定信息中很难确切地知道它所指代的具体含义,不过“DH”可能是与Denavit-Hartenberg参数表示方法相关,这是一种在机器人学中常用的方法,用于确定关节的位置和方向,以便于机械臂的建模和运动学分析。 在标签中,“仿真 MATLAB matlab 机械 资源”指出了这个压缩包文件的内容是围绕MATLAB这个软件的机械仿真资源。这表明用户可以通过MATLAB这个平台,利用这些资源进行6轴机械臂的仿真和分析。 文件名称列表中的各个文件在仿真过程中扮演了不同的角色: 1. com.github.dogdie233.LiarsBarEnhance.dll - 这个文件听起来像是一个动态链接库文件,可能包含了某些特定功能的算法或接口实现,用于与机械臂仿真相关的操作。 2. Ik_arm.m 和 fK_arm.m - 这两个文件名暗示它们分别是实现逆运动学(Inverse Kinematics)和正运动学(Forward Kinematics)计算的MATLAB脚本。 3. dh.m - 这个文件很可能是用于计算和实现Denavit-Hartenberg参数模型的函数。 4. my_trace.m - 这可能是一个自定义函数,用于在仿真过程中进行跟踪和记录仿真过程的某些参数。 5. start.m - 这可能是一个入口脚本,用于初始化仿真环境,或者开始仿真过程。 6. calculate_joint_angles.m 和 calculate_joint_angles.prj - 这些文件用于计算机械臂各个关节的角度,可能是逆运动学分析的关键部分。 7. readme.txt - 这个文件通常包含如何使用这些脚本和资源的说明,以及可能的安装指导和版本信息。 8. codegen - 这个文件或文件夹可能与MATLAB的代码生成功能有关,该功能可以将MATLAB代码转换为独立的、可执行的应用程序或库。 从这些文件的名称可以推测,这些资源提供了一套完整的流程,用于通过MATLAB对6轴机械臂进行从建模、运动学分析到仿真的整个过程。用户可以利用这些脚本对机械臂进行建模和运动学计算,最终通过仿真来验证机械臂的设计或控制策略的有效性。 这些资源对于学术研究、工程设计以及教育领域都是非常有价值的。它们可以帮助工程师、研究人员和学生更好地理解和掌握机械臂的运动学原理,并且在实际开发之前对控制策略进行测试和优化。通过MATLAB的仿真环境,用户能够更加直观地观察到机械臂在执行特定任务时的性能表现,以及在不同条件下的响应情况,这对于提升机械臂设计的性能和可靠性具有重要意义。 此外,由于这些资源是用MATLAB语言编写的,用户可能需要具备一定的MATLAB编程基础,以及对机械臂运动学和控制理论有初步的了解,才能更高效地利用这些资源。对于想要深入研究机械臂仿真或者控制系统开发的用户来说,这些资源无疑是一个很好的起点。 这个压缩包文件提供了一整套基于MATLAB的6轴机械臂仿真工具和脚本,用户可以借此学习和掌握机械臂的运动学分析和仿真实现。这些资源在机械臂的设计、控制算法的测试与验证、以及教学演示中都将发挥重要作用。
2025-05-09 21:34:50 2.37MB MATLAB matlab
1
Matlab机械臂关节空间轨迹规划:基于3-5-3分段多项式插值法的六自由度机械臂仿真运动,可视化角度、速度、加速度曲线,基于Matlab的机械臂关节空间轨迹规划:采用分段多项式插值法实现实时运动仿真与可视化,涵盖角度、速度、加速度曲线分析,matlab机械臂关节空间轨迹规划,3-5-3分段多项式插值法,六自由度机械臂,该算法可运用到仿真建模机械臂上实时运动,可视化轨迹,有角度,速度,加速度仿真曲线。 也可以有单独角度,速度,加速度仿真曲线。 可自行更程序中机械臂与点的参数。 谢谢大家 (程序中均为弧度制参数)353混合多项式插值 ,MATLAB; 机械臂关节空间轨迹规划; 3-5-3分段多项式插值法; 六自由度机械臂; 实时运动仿真; 可视化轨迹; 角度、速度、加速度仿真曲线; 弧度制参数。,基于3-5-3多项式插值法的Matlab机械臂轨迹规划算法:六自由度机械臂实时运动仿真建模与可视化分析
2025-05-08 14:25:56 1.78MB rpc
1
内容概要:本文介绍了采用粒子群算法(PSO)对6自由度机械臂轨迹进行优化的方法。首先,利用机械臂的正逆运动学原理获取轨迹插值点;接着,采用3-5-3多项式对轨迹进行插值,确保机械臂能快速平稳地到达目标位置;最后,使用改进的PSO算法对分段多项式插值构造的轨迹进行优化,实现时间最优的轨迹规划。实验结果显示,优化后的轨迹显著提升了机械臂的运动效率和平滑性。 适合人群:从事机器人技术、自动化工程及相关领域的研究人员和技术人员。 使用场景及目标:适用于需要提高机械臂运动效率和平滑性的应用场景,如工业生产线、自动化仓储系统等。目标是通过优化机械臂的运动轨迹,减少运动时间和能耗,提升生产效率。 其他说明:本文提出的方法不仅限于6自由度机械臂,还可以扩展应用于其他类型的机械臂轨迹优化问题。未来的研究方向包括探索更高效的优化算法,以应对更为复杂的机械臂运动轨迹优化挑战。
2025-05-08 09:47:49 1.18MB
1
针对机械臂运动轨迹控制中存在的跟踪精度不高的问题,采用了一种基于EC-RBF神经网络的模型参考自适应控制方案对机械臂进行模型辨识与轨迹跟踪控制。该方案采用了两个RBF神经网络,运用EC-RBF学习算法,采用离线与在线相结合的方法来训练神经网络,一个用来实现对机械臂进行模型辨识,一个用来实现对机械臂轨迹跟踪控制。对二自由度机械臂进行仿真,结果表明,使用该控制方案对机械臂进行轨迹跟踪控制具有较高的控制精度,且因采用EC-RBF学习算法使网络具有更快的训练速度,从而使得控制过程较迅速。
2025-05-07 20:14:03 609KB 论文研究
1
vrep coppeliasim与MATLAB联合仿真机械臂抓取 机器人建模仿真 运动学动力学直线圆弧笛卡尔空间轨迹规划,多项式函数关节空间轨迹规划 ur5协作机器人抓取 机械臂流水线搬运码垛 ,V-REP Coppeliasim与MATLAB联合仿真技术:机械臂抓取与轨迹规划的建模仿真研究,V-REP Coppeliasim与MATLAB联合仿真技术:机械臂抓取与运动规划的探索,vrep; coppeliasim; MATLAB联合仿真; 机械臂抓取; 机器人建模仿真; 运动学动力学; 轨迹规划; 关节空间轨迹规划; ur5协作机器人; 流水线搬运码垛,VrepCoppeliaSim与MATLAB联合仿真机械臂抓取与轨迹规划
2025-05-07 12:13:43 825KB 数据结构
1
VREP Coppeliasim与MATLAB联合实现机器人轨迹控制仿真:机械臂绘图轨迹规划与算法详解,vrep coppeliasim+matlab,机器人轨迹控制仿真,利用matlab读取轨迹并控制机械臂在墙上绘图,里面有轨迹规划的相关算法。 此为学习示例,有详细的代码和说明文档 ,vrep; coppeliasim; 机器人轨迹控制仿真; 机械臂绘图; 轨迹规划算法; 代码与说明文档,"利用CoppeliaSim和Matlab仿真机器人墙上绘图的轨迹控制策略" 在机器人技术领域,轨迹控制仿真是一项重要的研究方向,它涉及到机器人运动学、动力学和控制理论的深入应用。特别是在机械臂绘图这一应用中,仿真可以帮助工程师在不进行实际物理制造的情况下验证机械臂的运动轨迹和控制算法的可行性。本次讨论的重点是利用VREP Coppeliasim和MATLAB这两个强大的仿真软件的联合使用,实现机械臂在墙面上绘图的轨迹控制仿真。 VREP Coppeliasim是一个高级的机器人仿真平台,提供了一个虚拟的测试环境,可以模拟真实世界的物理行为和交互。它支持多种编程语言和接口,允许开发者对机械臂进行复杂的操作和控制。而MATLAB是一个广泛使用的数值计算和可视化软件,其强大的编程能力和丰富的工具箱使得它成为开发和测试算法的首选工具之一。 在本仿真中,MATLAB的主要作用是读取和处理轨迹数据,制定控制策略,并将这些策略转化为命令传递给VREP中的机械臂模型。通过这种方式,机械臂能够按照预设的轨迹运动,从而在虚拟的墙面上绘制出预期的图形。 对于轨迹规划算法,它是控制机械臂运动的核心内容。算法需要考虑机械臂各关节的运动限制、碰撞检测、最优路径等问题,确保机械臂能够高效且准确地完成绘图任务。算法的选取和设计直接影响到仿真结果的精确度和可靠性。 在给出的文件列表中,我们可以看到多个文件名提到了“机器人轨迹控制仿真”、“利用”、“轨迹规划算法”、“机械臂绘图”等关键术语,这表明文件内容很可能包含了关于如何使用Coppeliasim进行机械臂模型的创建、如何通过MATLAB进行仿真控制、以及如何实现轨迹规划算法的详细步骤。此外,文件名中的“探索与的奇妙结合用操控机械臂绘制墙上的艺术一初探与.txt”和“与结合进行机器人轨迹控制仿真案例解析随着.txt”等指明了对仿真案例的探索和解析,说明这些文件可能包含了对仿真过程中的关键问题的分析和解释。 此外,文件名中还包含了图片文件,如“2.jpg”和“1.jpg”,它们可能是对仿真过程或结果的可视化展示,为理解仿真内容提供了直观的参考。而“WindowManagerfree”和“与机器人轨迹控制.html”等文件名暗示了可能还涉及到了仿真环境的配置方法或仿真结果的展示方式。 这批文件集合了从理论到实践的全面内容,涵盖了利用Coppeliasim和MATLAB进行机器人轨迹控制仿真的各个关键环节,为研究人员和工程师提供了一套完整的学习和操作指南。通过这些文件的学习,用户不仅能够掌握如何搭建仿真环境,还能够深入理解轨迹规划算法的设计和应用,并最终实现机械臂在墙面上绘制出复杂图形的目标。
2025-05-07 11:53:37 1.13MB
1
内容概要:本文详细介绍了如何利用MATLAB及其工具箱进行机械臂的单智能体和多智能体控制系统的开发。首先,通过Robotics Toolbox创建机械臂模型,然后构建强化学习环境,设计奖励函数,并采用PPO算法进行训练。对于多智能体系统,讨论了协同工作的挑战以及解决方案,如使用空间注意力机制减少输入维度。此外,文章还探讨了从二维到三维控制的转换难点,包括观测空间和动作空间的设计变化,以及动力学模型的调整。文中提供了大量MATLAB代码片段,展示了具体实现步骤和技术细节。 适合人群:具有一定MATLAB编程基础和机器学习理论知识的研究人员、工程师。 使用场景及目标:适用于希望深入了解机械臂控制原理,特别是希望通过强化学习方法提高机械臂操作精度和灵活性的研发团队。目标是掌握如何构建高效的单智能体或多智能体控制系统,应用于工业自动化、机器人竞赛等领域。 其他说明:文章强调了实践中遇到的问题及解决方案,如动力学方程求解方法的选择、奖励函数的设计技巧等。同时提醒读者注意一些常见的陷阱,比如不当的动作空间设计可能导致的不稳定行为。
2025-05-07 08:55:44 1003KB
1