传统的调制度测量轮廓术在进行系统的标定时,需要将标准平面多次精密移动,以建立调制度与实际物理高度的映射关系,同时还要对摄像机进行单独的标定。提出一种新的用于调制度测量轮廓术系统的高度映射与相机同时标定的方法。该方法用一个含有多个台阶的标定模块代替传统的调制度测量轮廓术标定方法中使用的标准平面及复杂的平移定位系统,多个高度相同但空间离散分布的台阶构成多个虚拟校准平面,虚拟平面上的调制度分布是通过一个拟合过程实现的,同时多个台阶的中心点还可以作为立体靶标用于相机标定。这种标定方法的特点是:只需要一次扫描测量过程就可以完成系统的标定,包括建立调制度与高度的映射关系和对相机的标定。阐述了该标定方法的原理,并给出实验结果说明了该标定方法的有效性。
2025-06-16 13:53:17 13.38MB 三维面形 调制度测 垂直测量 高度映射
1
内容概要:本文探讨了基于NGSIM数据的Wiedemann99跟驰模型的标定过程及其优化方法。首先介绍了NGSIM数据集的特点及其在自动驾驶领域的应用价值。接着详细描述了使用Matlab实现Wiedemann99跟驰模型的具体步骤,包括编写自定义的RMSPE拟合优度函数,以及利用改进粒子群优化算法(IPSO)进行模型参数求解。通过对多个实验结果的分析,验证了所提出方法的有效性,提高了模型的精度和稳定性。 适合人群:从事自动驾驶技术研发的专业人士,尤其是对车辆跟驰模型有研究兴趣的科研人员和技术开发者。 使用场景及目标:适用于需要对标定Wiedemann99跟驰模型并提升其性能的研究项目。主要目标是在自动驾驶系统中提高车辆行驶的安全性和效率。 其他说明:文中提供的Matlab代码和IPSO算法实现为相关研究人员提供了宝贵的参考资料和技术支持。
2025-06-10 10:01:31 470KB
1
ROS机械臂仿真技术:ure5与RealSense的手眼标定与跟随系统研究与应用,基于ROS的机械臂视觉抓取技术的探索与实践,ros机械臂仿真 1.ure5+real sense,手眼标定+跟随 2.基于ros的机械臂视觉抓取 ,ROS机械臂仿真; URE5+RealSense; 手眼标定跟随; 基于ROS的机械臂视觉抓取,ROS机械臂仿真:手眼标定与跟随的视觉抓取 在当前的机器人领域,ROS(机器人操作系统)已经成为了一个非常重要的工具,特别是在机械臂的仿真领域,ROS提供了强大的功能和丰富的开源代码库,使得研究人员和工程师可以在一个较为简便的环境下进行机器人的控制与研究。本文档重点探讨了ROS机械臂仿真技术,特别是URE5与RealSense相结合的手眼标定与跟随系统的研究与应用,同时涉及到了基于ROS的机械臂视觉抓取技术。 URE5与RealSense的结合,为机械臂提供了高效的空间感知能力。RealSense是一种深度感知相机,它可以提供丰富的场景信息,包括深度信息、颜色信息等,这对于机器人操作来说至关重要。而URE5是一种先进的控制系统,它能够有效地处理来自RealSense的信息,结合手眼标定技术,可以精确地定位物体的位置,实现精确的抓取和操作。 手眼标定是机械臂视觉系统中的一项关键技术,它通过校准机械臂的相机坐标系与机械臂的运动坐标系之间的相对位置关系,使得机械臂能够准确地根据相机捕获的图像信息进行操作。这一过程在机器人视觉抓取任务中尤为关键,因为它确保了机械臂可以精确地理解其操作环境并作出反应。 跟随系统是智能机器人领域的另一个研究热点,它可以使得机械臂能够在移动过程中,持续跟踪目标物体,从而实现动态环境下的精确操作。结合手眼标定技术,跟随系统能够提供更加准确和可靠的追踪效果。 文档中还提到了基于ROS的机械臂视觉抓取技术,这通常涉及到图像处理、特征提取、物体识别与定位以及路径规划等多个环节。视觉抓取技术的探索与实践,不仅提升了机械臂的自主性,也为机器人在物流、装配、医疗等领域的应用提供了技术基础。 通过上述技术的研究与应用,可以预见未来的机械臂不仅能够执行更为复杂的操作任务,还能够更加灵活地适应不同的操作环境。这将极大地推动智能制造、服务机器人等领域的技术进步。 展望未来,机械臂的仿真技术与实际应用之间还存在一定的差距,如何将仿真环境中获得的高精度数据和算法,更好地迁移到真实世界中的机械臂操作,是未来研究的重要方向。同时,随着深度学习等人工智能技术的发展,未来的机械臂可能将拥有更为智能的决策和学习能力,实现更为复杂的任务。 此外,文档中提到的标签"xbox",可能是文档在整理过程中的一个误标记,因为在本文档内容中,并没有涉及到任何与Xbox游戏机或者相关技术直接相关的信息。因此,在内容处理时应忽略这一标记。
2025-06-06 22:26:57 471KB xbox
1
UR5基于realsenseD435i的手眼标定
2025-05-29 19:33:30 6.67MB 手眼标定
1
康耐视cognexVisionpro C#二次开发多相机视觉对位框架:实现多相机逻辑运算、运动控制、自动标定及TCP IP通讯,基于康耐视cognexVisionpro用C#二次开发的多相机视觉对位框架 支持1:多相机对位逻辑运算,旋转标定坐标关联运算(可供参考学习)可以协助理解做对位贴合项目思路。 支持2:直接连接运动控制卡,控制UVW平台运动(可供参考学习) 支持3:自动标定程序设定(可供参考学习) 支持4:TCP IP通讯(可供参考学习) 以上功能全部正常使用无封装,可正常运行。 ,多相机对位; 逻辑运算; 旋转标定; 运动控制卡连接; UVW平台控制; 自动标定程序; TCP IP通讯,康耐视多相机视觉对位框架:C#二次开发与高效标定控制实现指南
2025-05-17 17:06:29 644KB
1
在IT领域,特别是计算机视觉和3D重建技术中,相机和投影仪的标定是至关重要的步骤。相机标定是用来确定相机内参和外参的过程,而投影仪标定则是为了获取投影仪与相机之间的几何关系。这个压缩包提供的"calibImage"包含了用于相机和投影仪标定的图像,这将帮助用户快速验证他们的条纹结构光系统的效果。 相机标定通常涉及以下几个关键知识点: 1. **相机模型**:相机可以视为一个三维到二维的投影变换,最常见的模型是针孔相机模型,它通过焦距、主点坐标和畸变系数来描述相机的特性。 2. **内参数**:包括焦距(f)和主点坐标(cx, cy),这些参数决定了相机图像中心的位置和焦距大小。焦距是光线穿过镜头汇聚到传感器上的距离,主点是图像坐标系的原点。 3. **外参数**:描述相机相对于世界坐标系的位置和姿态,包括旋转矩阵和平移向量。旋转矩阵表示相机的三个轴相对于世界坐标轴的旋转角度,平移向量表示相机的中心位置。 4. **标定对象**:通常使用棋盘格或圆点阵列,这些特征点在不同视角下有明确的几何关系,便于计算相机的内外参数。 5. **标定过程**:包括图像采集、特征检测、匹配、几何校正和参数估计。利用OpenCV等库提供的函数,可以自动化完成大部分工作。 6. **投影仪标定**:与相机标定类似,但需额外考虑投影仪的几何特性,如镜头畸变、光源位置等。通常需要设计特殊的图案,如条纹或斑点,投射到目标物体上,然后用相机捕获。 7. **相机-投影仪同步**:确保相机和投影仪在时间和空间上的同步,以便准确地捕捉到投影的图像。 8. **点云生成**:通过相机和投影仪的标定结果,可以将投影的条纹转换为3D点云,用于深度感知和3D重建。 9. **验证方法**:通过对比标定后的点云结果和实际物体形状,评估标定的准确性。这个压缩包提供的"calibImage"就是为了这个目的,用户可以直接运行并查看标定效果。 这个软件/插件的应用场景广泛,包括机器人导航、增强现实、工业检测和3D建模等。通过有效的标定,可以提高系统精度,减少误差,从而优化整体性能。因此,对于从事相关领域的开发者来说,熟练掌握相机和投影仪的标定是非常必要的。
2025-05-17 15:27:48 474.82MB
1
多传感器标定算法是为了解决测量系统中由制造和装配误差所引起的机械部件的测量问题。为了确保测量精度,需要将不同类型的传感器(包括接触式和非接触式传感器)标定到同一个坐标系中,这样才能获得准确的测量数据。本文提出的标定算法基于单纯形法,该方法通过接触式传感器的标定为基础,并结合Fourier函数拟合非接触传感器的测量路径,以构造参数标定数学模型,并进行参数优化。 标定的基本原理是利用数学模型去描述传感器在测量过程中的误差,并通过一定的算法来修正这些误差。在此过程中,标定的目的是为了消除或减小系统的固有误差,从而提高系统的整体测量精度。多传感器系统由于其复杂性,需要综合考虑各种传感器的特性,以及它们之间的相互作用和影响。 单纯形法是一种优化算法,主要用于寻找多维空间的最优解。它广泛应用于工程、经济学、运筹学等领域。在多传感器标定算法中,单纯形法可以用来寻找到使误差最小化的最佳参数设置。通过迭代计算,逐步逼近最优解,从而达到标定的目的。 在接触式传感器的标定过程中,通常需要通过移动工作台或旋转工作台来进行坐标测量。但是由于制造和装配过程中存在的误差,工作台的移动方向和旋转方向的参数并不是完全已知的。为了获得精确的测量数据,需要确定三维坐标与移动和旋转参数之间的关系。而单纯的使用特定标块进行标定往往复杂且依赖于特定条件,因此需要一种更加通用和高效的方法。 文中提到了几种单一传感器标定的方法,包括微分标定法、简单齿形标定靶以及圆形阵列靶标等。这些方法在不同的测量系统中实现了不同精度的标定,但它们有一个共同的局限性,即它们更多地侧重于单一传感器的标定,而没有充分考虑同一测量系统中多个传感器的同步标定问题。 为了改进和简化标定过程,减少标定误差,本文提出了一种综合多传感器的测量系统,并基于单纯形法的多传感器标定算法。该算法不仅考虑了接触式传感器的标定,还通过Fourier函数拟合非接触式传感器的测量路径,构建参数标定的数学模型,实现了标定参数的最优化。 通过实验验证,本文算法的实例结果显示,使用该算法进行标定后,测量误差相对较小。这一结论表明,所提出的基于单纯形法的多传感器标定算法在提升测量精度方面是有效的,并且具有较好的应用前景。 通过以上的分析,我们可以知道,多传感器标定算法的核心在于如何处理传感器间的协同工作和误差校正,以及如何构建准确的数学模型来描述和修正这些误差。单纯形法作为一种有效的优化工具,在多传感器系统的标定中发挥着重要作用。此外,多传感器标定技术的发展对于提高测量系统的精确度和可靠性具有重要的意义,尤其是在复杂形状工件的外形测量中,其作用尤为突出。随着相关技术的不断进步,未来多传感器标定算法有望在更多的测量应用中得到广泛应用。
2025-05-11 14:22:09 298KB 首发论文
1
内容概要:本文详细介绍了如何使用Python构建一个完整的双目三维重建系统。首先,通过双目摄像头采集图像并进行硬件连接,接着进行双目标定和立体校正,确保图像无畸变并对齐。然后,利用SGBM算法和WLS滤波器进行视差计算,提高视差图的质量。最后,通过Open3D生成并显示点云,完成从二维图像到三维空间的转换。文中还提供了许多实战技巧,如标定失败的解决办法、视差图断层的处理以及点云降采样的方法。此外,系统还集成了深度学习模型用于立体匹配,进一步提升了系统的鲁棒性和精度。 适合人群:具有一定编程基础和技术背景的研发人员,尤其是对计算机视觉、三维重建感兴趣的开发者。 使用场景及目标:适用于需要进行三维重建的应用场景,如机器人导航、虚拟现实、增强现实等领域。主要目标是帮助读者掌握双目三维重建的完整流程,能够独立搭建和优化自己的三维重建系统。 其他说明:本文不仅提供详细的代码实现,还包括了许多实战经验和优化技巧,帮助读者避免常见错误并提高系统的性能。同时,附赠了一些常用的点云处理算法,方便读者进行二次开发。
2025-04-25 16:14:09 1.36MB
1
新能源汽车电机标定数据处理脚本 mtpa,弱磁 电机标定数据处理脚本,可用matlab2021打开,用于处理电机台架标定数据,将台架标定的转矩、转速、id、iq数据根据线性插值的方法,制作两个三维表,根据转速和转矩查询id、iq的值。 并绘制id、iq曲线。 资料包含: (1)一份台架标定数据excel文件 (2)数据处理脚本文件id_iq_data_map.m,脚本带注释易于理解 (3)电机标定数据处理脚本说明文件 (4)处理后的数据保存为id_map.txt,iq_map.txt 脚本适当修改可直接应用于实际项目 ,新能源汽车电机标定数据处理脚本,新能源汽车电机标定数据处理脚本:基于MTPA与弱磁控制的三维表制作与ID/IQ曲线绘制脚本,新能源汽车电机标定数据处理; mtpa; 弱磁; MATLAB 2021; 数据处理脚本; 线性插值; 三个维度表格; ID_IQ 曲线图; Excel 文件; 数据注释。,新能源汽车电机标定数据处理脚本:MTPA与弱磁控制的三维数据映射工具
2025-04-22 08:52:01 1.02MB rpc
1