辐射是由于接地电路中存在电压降(如下图),某些部位具有高电位的共电压,当外接电缆与这些部位连接时,就会在共电压激励下产生共电流,成为辐射电场的天线。这多数是由于接地系统中存在电压降所造成的。共辐射通常决定了产品的辐射性能。
2025-12-16 16:06:20 336KB
1
矿用刮板输送机链条张力控制系统是一个具有非线性、时变性等特点的复杂控制系统,传统的PID控制将无法满足越来越高的精度要求。为了获得令人满意的控制效果,提出了基于趋近律的滑控制,在此基础上,为了改善系统的抖振和响应速度,提出了一种改进的趋近律滑控制,提高系统的初始运动速度,降低系统在切换面附近的趋近速度。通过建立矿用刮板输送机链条张力控制系统的Simulink仿真型,仿真结果表明,与传统PID控制相比,系统响应速度、控制精度和系统抖振等都得到了显著改善。
1
在数竞赛中,"碎纸片的拼接复原"是一个典型的图像处理与计算机科学问题,涉及到数学建、图像处理、算法设计等多个领域的知识。2013年高教社杯数竞赛的B题就是这样一个挑战,要求参赛者解决如何从破碎的图像片段中重建原始图像的问题。下面我们将深入探讨这个问题的相关知识点。 我们要理解问题的基本设定。假设我们有一张被切割成多个碎片的图像,每个碎片都是不规则形状,我们需要找到一种方法将这些碎片正确地拼接起来。这涉及到的主要知识点包括: 1. 图像处理基础:图像可以看作二维矩阵,每个元素代表像素的灰度值或RGB色彩值。因此,拼接碎片前需要对碎片进行预处理,如灰度化、二值化等,以便简化后续处理。 2. 图像特征提取:为了确定碎片间的相对位置,我们需要识别出它们的边界特征。常见的特征包括边缘、角点、纹理等。例如,Canny边缘检测或SIFT(尺度不变特征变换)可用于提取这些特征。 3. 图像匹配算法:有了特征后,需要找到最佳的匹配组合。可以采用特征对应法,如Brute Force匹配、BFMatcher或FLANN(Fast Library for Approximate Nearest Neighbors)等。匹配过程中需要考虑相似性度量,如欧氏距离、余弦相似度等,并通过RANSAC(随机样本一致)等方法去除错误匹配。 4. 图形学中的几何变换:一旦找到匹配的碎片,就需要通过几何变换恢复其相对位置,常见的变换有平移、旋转、缩放和仿射变换。OpenCV库提供了这些变换的实现。 5. 图像拼接技术:将匹配并调整好位置的碎片整合到一起。这可能涉及重叠区域的融合,可以采用加权平均、最大值选择等方式处理。 6. 型优化与评估:在整个过程中,可能需要通过迭代优化来提高拼接效果,例如,使用遗传算法或粒子群优化等全局搜索策略。同时,建立评价指标(如拼接后的图像连续性、完整性等)来衡量型的性能。 7. 实现语言与工具:代码实现通常会使用Python、C++等编程语言,配合OpenCV、NumPy、PIL等库进行图像处理。 解决这个问题需要综合运用图像处理、计算机视觉、图形学和优化算法等多方面的知识。在实际的数竞赛中,参赛团队需要根据具体问题设计合适的型、算法,并进行有效的编程实现,以达到最优的拼接效果。这个过程不仅是技术上的挑战,也是团队协作和问题解决能力的锻炼。
2025-12-15 21:19:27 8KB 数学建模
1
我们讨论了A4块化对称性中的夸克质量矩阵,其中分别针对每个上夸克和下夸克扇区引入了希格斯的A4三重态。 该型除量τ外,还具有六个实际参数和两个复杂参数。 通过输入六个夸克质量和三个CKM混合角,我们可以预测CP违反相位δ和Jarlskog不变JCP。 δ和JCP的预测范围与观测值一致。 Vub的绝对值小于0.0043,而Vcb大于0.0436。 总之,我们具有A4块化对称性的夸克质量矩阵可以完全重现带有观察到的夸克质量的CKM混合矩阵。
2025-12-12 13:29:14 458KB Open Access
1
电课设函数发生器multisim仿真
2025-12-11 19:42:24 264KB 模电课设
1
四开关Buck-Boost与FSBB(Forward Standby Buck-Boost)技术及其三态自动切换机制。四开关Buck-Boost作为一种高效的直流电源,通过四个开关的精确控制实现电压调节。FSBB则在此基础上增加了零电压开关(ZVS)特性,进一步提高效率。文中重点讨论了C Block数字算法在闭环控制中的应用,包括平均电流控制和电压外环、电流内环双环控制策略。此外,文章还探讨了环路参数的设计与优化方法,以及ZVS的FSBB版本带来的性能提升。 适合人群:从事电力电子设计、电源管理及相关领域的工程师和技术人员。 使用场景及目标:适用于需要深入了解高效电源管理技术的研究人员和工程师,旨在帮助他们掌握四开关Buck-Boost与FSBB的工作原理、自动切换机制及C Block数字算法的应用,从而优化电源管理系统的设计。 其他说明:本文不仅涵盖了理论知识,还包括实际应用场景中的优化技巧,有助于读者更好地理解和应用这些先进技术。
2025-12-07 21:39:47 589KB
1
COMSOL中光子晶体光纤的有效折射率、式色散与有效式面积的计算研究,COMSOL光子晶体光纤技术研究:有效折射率、式色散与有效式面积计算,comsol光子晶体光纤有效折射率,式色散,有效式面积计算。 ,核心关键词:comsol; 光子晶体光纤; 有效折射率; 式色散; 有效式面积计算;,COMSOL计算光子晶体光纤性能:折射率、式色散与有效式面积研究 光子晶体光纤(Photonic Crystal Fiber, PCF)是一种新型光学纤维,它通过在光纤内部构造周期性的空气孔结构,使得光在其中传播时展现出与传统光纤截然不同的物理特性。近年来,随着计算机仿真技术的发展,运用仿真软件如COMSOL对光子晶体光纤进行性能分析成为研究的热点。 COMSOL Multiphysics是一款强大的多物理场仿真软件,它能够拟从电学到光学,从流体到结构等各种物理现象,这为光子晶体光纤的设计和性能分析提供了强有力的支持。在光子晶体光纤的研究中,有效折射率、式色散和有效式面积是三个核心的物理参数。 有效折射率是表征光在光子晶体光纤中传播速度的量度,它与光纤的几何结构以及材料的折射率分布密切相关。在COMSOL仿真中,通过设置正确的材料属性和边界条件,可以计算出光子晶体光纤在不同式下的有效折射率,从而分析光纤的导光特性。 式色散则是指在光子晶体光纤中,不同式的光波以不同的速度传播,导致光脉冲随传播距离展宽的现象。式色散的大小直接关系到光纤的传输容量和通信质量。通过仿真分析不同式下光波的色散特性,可以优化光纤结构,以减小色散,提高通信系统的性能。 有效式面积是指光子晶体光纤中传输的光场分布的有效区域大小。它与光纤的式限制能力、非线性效应以及功率传输能力有关。在高功率激光传输或非线性光学应用中,有效的式面积尤为重要。通过COMSOL拟,可以预测并优化光纤设计,以获得所需的式面积,减少非线性效应,增强系统性能。 利用COMSOL进行光子晶体光纤仿真不仅可以探究这些物理参数,还可以深入分析光纤的色散补偿、非线性效应抑制、式面积优化等问题。此外,仿真结果还可以为实验设计提供理论指导,帮助科研人员在实际制作光纤之前预测其性能,从而节约成本、缩短研发周期。 COMSOL软件在光子晶体光纤的技术研究领域发挥着至关重要的作用。通过对有效折射率、式色散以及有效式面积的计算分析,研究者们能够深入理解光纤的传输特性,并为光纤的设计和应用提供科学依据。随着仿真技术的不断进步,未来光子晶体光纤的研究与开发将更加依赖于多物理场仿真软件,以实现更加精确和高效的设计与优化。
2025-12-05 09:03:51 147KB
1
matlab项目资料供学习参考,请勿用作商业用途。你是否渴望高效解决复杂的数学计算、数据分析难题?MATLAB 就是你的得力助手!作为一款强大的技术计算软件,MATLAB 集数值分析、矩阵运算、信号处理等多功能于一身,广泛应用于工程、科学研究等众多领域。 其简洁直观的编程环境,让代码编写如同行云流水。丰富的函数库和工具箱,为你节省大量时间和精力。无论是新手入门,还是资深专家,都能借助 MATLAB 挖掘数据背后的价值,创新科技成果。别再犹豫,拥抱 MATLAB,开启你的科技探索之旅!
2025-12-04 10:13:08 104KB
1
在当今数字化时代,Web应用的开发越来越注重前后端分离的式。这种式下,Flask和Vue.js分别以其轻量级和灵活性的特点,成为开发者构建现代Web应用的热门选择。YOLOv5作为一个先进的目标检测型,因其高速度和高准确率而备受瞩目。将这些技术整合到一起,开发者可以构建出既能实时处理图像识别任务,又能提供优雅用户界面的应用。 Flask是一个用Python编写的轻量级Web应用框架,它以灵活性著称,非常适合用来构建RESTful API服务。在本项目中,Flask被用作后端服务器的核心框架,处理前端的请求,并与YOLOv5型交互,实现目标检测功能。其简洁的设计理念使得开发过程更加高效,同时也易于维护和扩展。 Vue.js则是一款渐进式的JavaScript框架,主要负责构建用户界面,它以数据驱动和组件化的思想,允许开发者以最小的成本来构建交互式的Web界面。在本项目中,Vue.js被用来创建一个响应式的前端界面,用户可以在这个界面上上传图片或视频,并实时查看YOLOv5检测的结果。 YOLOv5(You Only Look Once version 5)是一个被广泛使用的实时目标检测系统,特别是在安防监控、工业检测等领域。它的快速和准确性使其成为众多开发者和研究者的首选。YOLOv5的型可以轻松地集成到Flask后端中,以实时处理图像,并返回检测到的对象信息。 整个项目的开发涉及到前后端的交互和数据处理流程。后端Flask服务器接收到前端的请求后,会调用YOLOv5型处理相应的图像数据。处理完成后,将检测结果返回给前端Vue.js应用,Vue.js应用根据这些数据动态更新界面,展示检测结果。整个流程不仅体现了前后端分离的优势,同时也展示了如何将人工智能技术与现代Web技术相结合。 此外,该项目的部署工作是在Web端进行的,这意味着它可以作为云端服务来提供目标检测能力。用户无需安装任何软件,仅需通过浏览器即可访问应用,并享受实时图像识别的服务。这种便捷的访问方式大大降低了技术门槛,提高了用户体验。 在部署方面,整个系统需要保证足够的计算能力来支撑YOLOv5型的实时运算。通常需要搭配高性能的GPU资源,以确保图像处理的高效性和准确性。同时,安全性和稳定性也是部署时需要考虑的重要因素,需要确保用户上传的数据得到妥善处理,并且系统能够抵御潜在的安全威胁。 通过结合Flask、Vue.js以及YOLOv5型,开发者可以创建出既实用又高效的实时图像识别Web应用。这种应用不仅在技术上有其先进性,同时在用户体验和应用范围上也具有很大的潜力。
2025-12-03 20:07:54 39.76MB
1
内容概要:本文详细探讨了非奇异快速终端滑控制(NFTSMC)与其他几种滑控制方法(TSMC、NTSMC、FTSMC)之间的区别,重点分析了它们的趋近率、收敛速度以及抖振抑制效果。文中通过具体的数学表达式和仿真实验展示了不同控制方法的特点和应用场景。例如,在机械臂轨迹跟踪中,TSMC可能出现奇异问题导致系统不稳定;而在四旋翼姿态控制中,NTSMC虽然解决了奇异问题但响应速度较慢;FTSMC则表现出快速收敛但抖振较大;最终,NFTSMC以其非奇异结构、快速收敛和良好的抖振抑制能力脱颖而出,适用于需要高精度控制的场合,如协作机器人的关节控制。 适用人群:对滑控制有一定了解并希望深入了解其改进版本的研究人员和技术人员。 使用场景及目标:帮助读者理解不同类型滑控制方法的优缺点,选择最适合具体应用场景的控制策略,特别是在需要兼顾快速响应和稳定性的复杂控制系统中。 其他说明:文章强调了参数调整的重要性,并提醒读者注意实际系统中的限制条件,如执行器饱和等问题。
2025-11-29 13:32:39 560KB
1