计算机视觉与模式识别领域近年来取得了长足的发展,特别是在手势识别方面,它作为人机交互的重要方式之一,已经被广泛应用于智能控制系统、虚拟现实以及自动化设备中。本项目是基于Python3.7编程语言,结合OpenCV库,针对手势轮廓特征提取及机器学习分类技术的深入研究,并且完整地展示了从手势图像采集、预处理、特征提取,到模型训练以及最终的分类识别整个流程的开发步骤。 项目实施过程中,开发者需要对Python编程语言有较深入的理解,同时对OpenCV库的操作应熟练掌握。OpenCV库作为计算机视觉领域最流行的开源库之一,它提供了大量的计算机视觉和机器学习算法,使得开发者可以快速地进行图像处理和分析。 手势轮廓特征提取是手势识别中的关键技术。在这个项目中,开发者需要运用图像处理技术,如边缘检测、轮廓提取等,来准确地从背景中分离出手势图像,并获取手势的轮廓信息。这些轮廓信息将作为后续机器学习算法的输入特征,用于训练分类模型。 机器学习分类是通过训练算法对特征数据进行学习,从而实现分类任务的过程。在这个项目中,可能会使用到的机器学习模型包括支持向量机(SVM)、随机森林、神经网络等。这些模型需要基于提取到的特征数据进行训练,以达到准确分类手势的目的。 此外,项目中还包含了手势库的构建以及傅里叶描述子的使用。手势库的构建是为了存储大量的手势图像样本,它们将被用于训练和测试机器学习模型。傅里叶描述子则是一种用于形状描述的方法,它可以将轮廓信息转换为频域信息,这有助于更好地提取和表示形状的特征。 整个项目的开发是在Windows 10环境下进行的,这为开发者提供了稳定的操作系统平台。而在项目中提到的“gesture-recognition-master”文件夹,可能是包含了项目源代码、数据集、预训练模型以及其他重要文件的核心目录,是整个项目实现的关键部分。 此外,项目的文档资源包括“附赠资源.docx”和“说明文件.txt”,这些文档资料将为项目的开发提供指导和帮助。开发者可以通过阅读这些文档来了解项目的详细说明、安装配置指南以及使用方法等重要信息。 这个项目是计算机视觉与模式识别领域中的一个实际应用案例,它不仅涵盖了手势识别技术的关键环节,还结合了机器学习和深度学习方法,具有很高的实用价值和研究意义。通过对项目的深入分析和学习,开发者可以掌握手势识别的核心技术,为未来在相关领域的发展打下坚实的基础。
2025-06-28 12:02:03 8.85MB
1
简述 模型的应用数据集为PHM2012轴承数据集,使用原始振动信号作为模型的输入,输出为0~1的轴承剩余使用寿命。每一个预测模型包括:数据预处理、预测模型、训练函数、主程序以及结果输出等五个.py文件。只需更改数据读取路径即可运行。【PS: 也可以改为XJTU-SY轴承退化数据集】 具体使用流程 1.将所有的程序放在同一个文件夹下,修改训练轴承,运行main.py文件,即可完成模型的训练。 2.训练完成后,运行result_out.py文件,即可输出预测模型对测试轴承的预测结果。
2025-06-25 14:37:18 101.32MB ConvLSTM 深度学习
1
主要内容:本文介绍了Apache Flink的基本概念和安装配置流程,涵盖实时和批处理的数据处理技术,并深入探讨了Flink Machine Learning(Flink ML)库的应用,从数据预处理开始一直到复杂的机器学习模型的训练、评估及优化,展示了多项数据挖掘技术及其集成到大数据生态系统的能力,还给出了多个实际的Flink应用案例,在电商推荐系统、金融风控模型及实时日志分析等领域的具体实现思路和技术细节。 适合人群:数据工程师、开发人员,对流处理及机器学习有一定基础的研究者。 使用场景及目标:适用于需要解决实时或批处理问题的企业级系统;旨在帮助企业建立可靠的数据流管道并对复杂场景下的数据进行高效的实时挖掘。 其他补充:文章还讨论了Flink在Hadoop生态及Spark的对比,强调了Flink在处理混合数据流时的高效性及其在大数据生态圈的重要地位。
2025-06-24 13:39:53 52KB Flink 机器学习 数据挖掘
1
内容概要:本文详细介绍了使用Python进行时间序列分析和预测的方法,特别是针对月度NDVI(归一化差异植被指数)数据。首先,文章展示了如何导入必要的库和数据,并对数据进行了初步探索与清洗,包括处理缺失值和将日期列设置为索引。接着,通过可视化手段展示了原始数据的分布情况,并应用季节分解方法分析了数据的趋势、季节性和残差成分。为了检验数据的平稳性,文中使用了ADF(Augmented Dickey-Fuller)测试,并对非平稳数据进行了差分处理。此外,文章还深入探讨了自相关函数(ACF)和偏自相关函数(PACF)图的应用,以帮助选择合适的ARIMA模型参数。最后,文章构建并评估了一个SARIMA模型,用于预测未来三年(2023-2025年)的月度NDVI值,并通过图形展示了预测结果及其置信区间。 适合人群:具备一定Python编程基础的数据分析师、数据科学家以及对时间序列分析感兴趣的科研人员。 使用场景及目标:① 学习如何处理和分析时间序列数据,包括数据预处理、可视化和模型选择;② 掌握ADF测试、ACF/PACF图的解读以及SARIMA模型的构建和评估;③ 实现对未来NDVI值的预测,并理解预测结果的置信区间。 其他说明:本文提供了完整的代码示例,涵盖了从数据加载到模型训练和预测的所有步骤。读者可以通过运行这些代码来加深对时间序列分析的理解,并应用于类似的数据集上。建议读者在实践中逐步调试代码,结合理论知识,以更好地掌握时间序列建模的技术。
1
内容概要:本文详细介绍了街景主观感知模型的训练与大规模预测方法。首先,文章阐述了街景主观感知模型的基本概念及其重要性,强调了‘beautiful’和‘safer’等主观感知维度。接着,文中提到使用自定义数据集(420张图片)进行模型训练的基础,确保数据集的质量和丰富性。然后,文章对多个深度学习模型(如ResNet50、ResNet101、EfficientNet等)进行了对比训练,记录并分析了各模型的表现。最终,通过大量训练和优化,模型在测试集上取得了0.89的高精度。此外,文章还讨论了如何利用训练好的模型进行大规模预测,为城市规划和改造提供有价值的数据支持。 适合人群:从事计算机视觉领域的研究人员和技术人员,尤其是对街景感知模型感兴趣的从业者。 使用场景及目标:适用于希望深入了解街景主观感知模型训练和预测的研究人员,旨在帮助他们掌握多模型对比的方法,提升模型精度,应用于实际的城市规划和改造项目。 其他说明:文章不仅提供了理论指导,还分享了具体的实践经验,使读者能够在实践中更好地理解和应用相关技术。
2025-06-04 22:36:40 2.26MB
1
内容概要:本文档提供了一个完整的LSTM(长短期记忆网络)入门示例,使用Python和PyTorch框架。首先,通过创建一个带噪声的正弦波时间序列数据并进行可视化,然后将其转换为适合LSTM模型训练的序列形式。接着定义了一个简单的LSTM模型,包括一个LSTM层和一个全连接层,用于处理时间序列数据并输出预测值。训练过程中采用均方误差作为损失函数,Adam优化器进行参数更新,并记录训练和测试的损失变化。最后,通过绘制损失曲线以及展示模型在训练集和测试集上的预测效果来评估模型性能。此外,还给出了扩展建议,如调整超参数、使用更复杂的数据集、增加网络深度等。 适合人群:对机器学习有一定了解,特别是对神经网络有初步认识的研发人员或学生。 使用场景及目标:①理解LSTM的基本原理及其在时间序列预测中的应用;②掌握如何使用PyTorch搭建和训练LSTM模型;③学会通过调整超参数等方式优化模型性能。 阅读建议:此资源提供了从数据准备到模型训练、评估的一站式解决方案,建议读者跟随代码逐步操作,在实践中深入理解LSTM的工作机制,并尝试不同的改进方法以提升模型表现。
2025-05-22 09:36:00 16KB Python LSTM PyTorch 时间序列预测
1
模型的应用数据集为PHM2012轴承数据集,使用原始振动信号作为模型的输入,输出为0~1的轴承剩余使用寿命。每一个预测模型包括:数据预处理、预测模型、训练函数、主程序以及结果输出等五个.py文件。购买后,提供数据集及相关程序,只需更改数据读取路径即可运行。【PS: 也可以改为XJTU-SY轴承退化数据集】 具体使用流程 1.将所有的程序放在同一个文件夹下,修改训练轴承,运行main.py文件,即可完成模型的训练。 2.训练完成后,运行result_out.py文件,即可输出预测模型对测试轴承的预测结果。
2025-05-18 17:39:57 501.29MB 深度学习
1
简述 模型的应用数据集为PHM2012轴承数据集,使用原始振动信号作为模型的输入,输出为0~1的轴承剩余使用寿命。每一个预测模型包括:数据预处理、预测模型、训练函数、主程序以及结果输出等五个.py文件。只需更改数据读取路径即可运行。【PS: 也可以改为XJTU-SY轴承退化数据集】 具体使用流程 1.将所有的程序放在同一个文件夹下,修改训练轴承,运行main.py文件,即可完成模型的训练。 2.训练完成后,运行result_out.py文件,即可输出预测模型对测试轴承的预测结果。
2025-05-10 20:35:31 411.94MB 深度学习
1
简述 模型的应用数据集为PHM2012轴承数据集,使用原始振动信号作为模型的输入,输出为0~1的轴承剩余使用寿命。每一个预测模型包括:数据预处理、预测模型、训练函数、主程序以及结果输出等五个.py文件。只需更改数据读取路径即可运行。【PS: 也可以改为XJTU-SY轴承退化数据集】 具体使用流程 1.将所有的程序放在同一个文件夹下,修改训练轴承,运行main.py文件,即可完成模型的训练。 2.训练完成后,运行result_out.py文件,即可输出预测模型对测试轴承的预测结果。
2025-05-07 11:25:43 701.91MB
1
基于YOLOv8算法的轨道异物智能检测系统:含数据集、模型训练与可视化展示的全面解决方案,基于YOLOv8算法的轨道异物智能检测系统:含模型训练与评估、可视化展示及pyqt5界面设计指南,十四、基于YOLOv8的轨道异物检测系统 1.带标签数据集,100张图片。 2.含模型训练权重和指标可视化展示,f1曲线,准确率,召回率,损失曲线,混淆矩阵等。 3.pyqt5设计的界面。 4.提供详细的环境部署说明和算法原理介绍。 ,YOLOv8; 轨道异物检测; 带标签数据集; 模型训练; 权重; 指标可视化; f1曲线; 准确率; 召回率; 损失曲线; 混淆矩阵; pyqt5界面设计; 环境部署说明; 算法原理介绍。,基于YOLOv8的轨道异物智能检测系统:模型训练与可视化展示
2025-04-24 09:49:33 1.31MB
1