文章目录过拟合、欠拟合及其解决方法过拟合问题(high variance)欠拟合问题(high bias)梯度消失及梯度爆炸循环网络进阶 过拟合、欠拟合及其解决方法 过拟合问题(high variance) 过拟合问题:是指模型太过复杂,对训练数据效果好,而对新样本泛化能力较弱。 (训练误差低 验证误差高) 产生过拟合的可能原因,可能为其中之一或者都有: 模型的复杂度过高。如网络太深,神经网络中;或者线性回归中模型的阶次 过多的变量特征 训练数据过少 如何解决过拟合: 降低模型复杂度 减少特征数目 增加数据 正则化等 欠拟合问题(high bias) 欠拟合:指模型太过简单,不能对训练数据效果
2022-05-17 15:17:48 60KB 小结 循环 循环神经网络
1
按图索骥学-机器学习 有关机器学习的一组教程,深入浅出 用一副思维导图串联所有学习资源和知识点,每个同学都可以根据自己的情况,按图索骥,设计自己的学习路径,学习需要的课程 有关此课程详细信息,请访问https://code946.blog.csdn.net/
2022-03-21 21:54:03 358KB 欠拟合 过拟合 python 机器学习
1
baseline import tensorflow.keras.layers as layers baseline_model = keras.Sequential( [ layers.Dense(16, activation='relu', input_shape=(NUM_WORDS,)), layers.Dense(16, activation='relu'), layers.Dense(1, activation='sigmoid') ] ) baseline_model.compile(optimizer='adam', loss='binary_crossen
2021-12-31 15:48:01 44KB AS history keras
1
一、过拟合欠拟合及其解决方案 我们将探究模型训练中经常出现的两类典型问题: 一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting); 另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。 在实践中,我们要尽可能同时应对欠拟合和过拟合。虽然有很多因素可能导致这两种拟合问题,在这里我们重点讨论两个因素:模型复杂度和训练数据集大小。 二、梯度消失梯度爆炸 深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion)。 当神经网络的层数较多时,模型的数值稳定性容易变差。 假设一个层数为的多层感知
2021-12-22 20:23:31 150KB 循环 循环神经网络 梯度
1
笔记整理 代码整理 L2 范数正则化(regularization) %matplotlib inline import torch import torch.nn as nn import numpy as np import sys sys.path.append(/home/kesci/input) import d2lzh1981 as d2l # L2范数正则化 def fit_and_plot_pytorch(wd): # 对权重参数衰减。权重名称一般是以weight结尾 net = nn.Linear(num_inputs, 1) nn.init
2021-11-17 14:31:48 765KB c num OR
1
欠拟合 模型无法得到较低的训练误差(模型在训练数据集上表现出的误差),这一现象称作欠拟合(underfitting) 过拟合 过拟合得问题指的是模型在测试集上的结果不好,训练误差较低但是泛化误差依然较高,二者相差较大。 解决过拟合得问题通常可以通过增加数据量,另外还可以用正则化的方法。 正则化 L2范数正则化 通常指得是L2范数正则化,是在损失函数中再加一个正则项λ2n\frac{λ}{2n}2nλ​,其中超参数λ>0λ>0λ>0,损失函数如下 J(W,b)+λ2n∣w∣2J(W,b)+\frac{λ}{2n}|w|^2J(W,b)+2nλ​∣w∣2, L2范数表示向量元素的平方和再开平方。
2021-11-15 13:27:33 114KB 学习 学习笔记 数据拟合
1
过拟合与欠拟合.pdf
2021-09-21 11:01:41 1.26MB 互联网
目录 过拟合、欠拟合及其解决方案 训练误差和泛化误差 过拟合和欠拟合的概念 模型复杂度和误差之间的关系 解决过拟合的方案 梯度消失及梯度爆炸 循环神经网络进阶 GRU LSTM 深度神经网络 过拟合、欠拟合及其解决方案 训练误差和泛化误差        在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error)。通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。计算训练误差和泛化误差可以使用之前介绍过的损失函数,例如线性回归用到的平方损失函
2021-09-09 10:24:22 399KB 学习 循环 循环神经网络
1