内容概要:本文介绍了伪谱法(伪谱最优控制方法)及其在混合动力汽车能量管理控制中的应用,特别是借助GPOPS II软件的具体操作流程。首先简述了伪谱法的基本概念,即通过将连续时间或离散时间的最优控制问题转换成离散参数优化问题来获取最优解。接着详细讲解了GPOPS II这款基于伪谱法的最优控制软件的功能特点,如建模便捷、参数设定灵活以及高效的求解速度。最后,以混合动力汽车为例,具体展示了从建立模型、设置参数、运行软件到最后实施控制策略的一系列步骤,强调了这种方法对于提高燃油经济性和动力性能的重要性。 适合人群:从事混合动力汽车研究的技术人员、高校相关专业师生。 使用场景及目标:适用于需要深入了解混合动力汽车能量管理控制机制的研究者,旨在帮助他们掌握利用伪谱法和GPOPS II软件解决实际工程问题的能力。 其他说明:文中提到的内容不仅限于理论探讨,还包括具体的案例分析和操作指南,有助于读者更好地理解和应用所学知识。
2025-09-07 23:27:59 308KB
1
内容概要:本文探讨了基于模型预测控制(MPC)的燃料电池-动力电池混合动力汽车(FCHV)能量管理策略。研究对象为FCHV,重点在于在预测域内车速已知的情况下,构建最优控制问题并采用动态规划和PMP(庞加莱-莫尔森原理)求解方法,以获得最优的燃料电池输出功率。通过这两种方法,可以在不同车速和能源需求条件下,实现高效的能源分配,提升能源利用效率,延长续航里程,并减少排放。 适合人群:从事新能源汽车研究的技术人员、高校相关专业师生以及对混合动力汽车能量管理感兴趣的科研工作者。 使用场景及目标:适用于研究和开发燃料电池混合动力汽车能量管理系统,旨在提高车辆的能源利用效率和续航能力,同时减少环境污染。 其他说明:本文不仅介绍了具体的求解方法和技术细节,还对未来的研究方向进行了展望,强调了绿色出行和可持续发展的意义。
2025-08-25 21:36:29 177KB
1
内容概要:本文详细探讨了模型预测控制(MPC)在混合动力汽车能量管理中的应用。首先介绍了车速预测模型,如BP神经网络和RBF神经网络,用于预测未来的车速信息。接着讨论了动态规划(DP)算法与MPC的结合,实现了基于预测的优化控制策略。通过逆向迭代和正向求解的方法,能够在预测时域内找到局部最优解,从而提高燃油经济性和能量利用效率。此外,还提到了在线预测的魅力,即将预测模型与MPC结合,实现接近实时的最优能量管理。文中提供了大量伪代码示例,展示了具体的实现过程和技术细节。 适合人群:从事混合动力汽车研究的技术人员、高校师生及相关领域的研究人员。 使用场景及目标:适用于希望深入了解混合动力汽车能量管理策略优化的研究者,旨在通过MPC和DP的结合,提升车辆的燃油经济性和能量利用效率。 其他说明:文章不仅提供了理论分析,还包括了大量的代码示例,有助于读者更好地理解和实践。同时,作者分享了一些个人经验,如状态离散化策略、遗传算法优化BP神经网络等,进一步丰富了内容。
2025-07-26 14:29:48 1.47MB
1
内容概要:本文探讨了如何利用动态规划(Dynamic Programming, DP)和模型预测控制(Model Predictive Control, MPC)实现并联混合动力电动汽车的优化控制。文中详细介绍了这两种方法的工作原理及其结合方式,即通过将DP嵌入MPC的滑动窗口中进行滚动优化,从而达到节省燃料消耗的目的。此外,还提供了具体的MATLAB代码示例,包括状态转移矩阵构建、滚动优化循环以及实时控制循环等关键部分,并展示了实验结果表明该策略能够有效减少油耗并稳定电池荷电状态(State of Charge, SOC)。 适用人群:从事汽车工程、自动化控制领域的研究人员和技术人员,特别是关注新能源汽车节能技术的专业人士。 使用场景及目标:适用于希望深入了解并联混合动力电动汽车控制系统的设计原理和实现细节的研究者;旨在提高车辆能源效率的同时保持良好的驾驶性能。 其他说明:文中提到的方法虽然增加了算法复杂度,但由于现代车载芯片的强大运算能力,使得这种方法成为可能。对于有兴趣进一步探索相关主题的人士来说,这是一份非常有价值的参考资料。
2025-07-24 16:32:16 2.51MB
1
AMESim系统仿真车辆混合动力解决方案是针对现代汽车行业中混合动力技术的一种高级仿真工具。该解决方案由LMS Imagine.Lab提供,特别适用于车辆驾驶舒适性、机电系统和整车控制设计的优化。虽然这份资料可能相对较早,但其核心理念和方法在当前依然具有很高的实用性。 混合动力技术背景主要围绕燃油经济性、排放降低以及驾驶舒适性的提升。通过采用混合动力系统,可以实现发动机的优化运行,例如取消怠速状态,让发动机始终工作在最佳效率点附近,从而提高燃油效率。此外,混合动力汽车的再生制动系统能够回收制动能,转化为电能存储,进一步提升能源利用率。同时,混合动力车辆需要更复杂的整车控制策略,以协调发动机、电机、电池等新部件的工作,确保驾驶性能和驾驶乐趣不受影响。 AMESim作为混合动力仿真解决方案的核心,具备高度可扩展性,可以根据不同的开发目标和模型复杂度进行调整。从预设计阶段的控制逻辑开发,到系统参数标定和部件参数优化,AMESim都能提供不同层次的详细模型。例如,发动机模型可以从简化的Map Engine模型到基于时间的Mean Value Engine Model,再到高频率的3D CFD Model,满足从低频到高频,从准稳态到瞬态的各种仿真需求。 在混合动力汽车的机电系统中,AMESim支持对启动发电一体机、ISG、BSG、驱动电机、储能元件(如锂电池、镍氢电池、超级电容)以及动力控制电子单元(如DC/DC和DC/AC转换器)的建模。这些部件的集成和控制策略的优化,可以通过AMESim的多功能接口和实时仿真功能进行测试和验证。 在整车控制设计方面,AMESim提供了多学科系统耦合的建模能力,考虑了机械传动效率、热管理和电能管理等多个维度。这种多级复杂程度的建模方法允许工程师在功能模型和详细部件模型之间灵活切换,以适应从概念验证到实际原型的各个开发阶段。 AMESim车辆混合动力解决方案为工程师提供了全面而强大的工具集,能够应对混合动力汽车在设计和优化过程中面临的挑战,包括驾驶舒适性、系统效率和整车能量管理等关键问题。通过使用AMESim,汽车行业能够更高效地开发出兼顾性能、环保和舒适性的混合动力车型。
2025-06-27 10:23:25 8.51MB AMESim
1
燃料电池混合动力汽车仿真模型:双输入DCDC与蓄电池管理系统研究,燃料电池混合动力汽车仿真模型研究:双输入DCDC与蓄电池管理系统研究,燃料电池电动汽车simulink模型 燃料电池混合动力汽车的仿真模型 双输入DCDC(嵌套于燃料电池汽车) 蓄电池管理系统(嵌套整车模型) ,关键词: 燃料电池电动汽车; Simulink模型; 混合动力汽车; 仿真模型; 双输入DCDC; 蓄电池管理系统; 整车模型。 关键词以分号分隔的结果为: 燃料电池电动汽车;Simulink模型;混合动力汽车仿真模型;双输入DCDC;蓄电池管理系统;整车模型。,基于双输入DCDC的燃料电池混合动力汽车仿真模型设计与分析
2025-05-13 16:50:29 2.6MB kind
1
基于MATLAB平台的燃料电池混合动力能量管理策略——等效氢气消耗最小化在线能量管理方法,基于MATLAB平台的燃料电池混合动力能量管理策略:等效氢气消耗最小化在线能量管理方法,等效氢气消耗最小的燃料电池混合动力能量管理策略 基于matlab平台开展,纯编程,.m文件 该方法作为在线能量管理方法,可作为比较其他能量管理方法的对比对象。 该方法为本人硕士期间编写,可直接运行 可更任意工况运行 ,等效氢气消耗;燃料电池混合动力;能量管理策略;Matlab平台;纯编程;.m文件;在线能量管理;硕士期间编写;直接运行;可更换工况。,基于Matlab编程的等效氢气消耗最小化燃料电池混合动力管理策略:在线应用与多工况适应性
2025-05-12 19:23:33 642KB 正则表达式
1
内容概要:本文深入探讨了基于模糊逻辑的并联式混合动力车辆控制策略,详细介绍了其在不同工况下的应用及仿真结果。首先选择了WLTC和NEDC两种典型工况,构建了包括工况输入、发动机、电机、制动能量回收、转矩分配、档位切换以及纵向动力学在内的整车Simulink模型。通过模糊逻辑控制器,实现了发动机和电机之间的最优转矩分配,确保了车辆在各种工况下的高效运行。仿真结果显示,该控制策略不仅提高了车辆的动力性能,还显著降低了燃油消耗,证明了其可行性和有效性。 适合人群:从事汽车工程、自动化控制领域的研究人员和技术人员,尤其是对混合动力车辆控制系统感兴趣的读者。 使用场景及目标:适用于希望深入了解并联式混合动力车辆控制策略的研究人员和技术人员。目标是掌握模糊逻辑在混合动力车辆控制中的具体应用,理解如何通过Simulink建模和仿真优化车辆性能。 其他说明:文中提供的MATLAB代码片段有助于读者更好地理解和复现实验结果。此外,详细的仿真图像分析为评估控制策略的效果提供了直观的支持。
2025-05-07 23:07:53 475KB
1
《太阳能-风能-混合动力-植物-使用模拟链接-matlab 进行仿真》(毕业设计,源码,部署教程)在本地部署即可运行。功能完善、界面美观、操作简单,具有很高的实用价值,适合相关专业毕设或课程设计使用。 MATLAB作为一种高性能的数值计算环境和第四代编程语言,广泛应用于工程计算、控制设计、信号处理与通信、图像处理等领域。在新能源技术领域,MATLAB提供了强大的仿真和分析工具,特别是在太阳能、风能等可再生能源系统的建模与仿真方面,具有独特的优势。通过对太阳能和风能混合动力系统的仿真研究,可以优化系统设计,提高能源转换效率,减少对传统能源的依赖。 本项目《太阳能-风能-混合动力-植物-使用模拟链接-matlab 进行仿真》主要针对太阳能和风能的混合动力植物进行仿真分析。混合动力植物指的是结合了太阳能光伏系统和风力发电机的发电系统,该系统能够更加稳定地输出电能,因为它能够有效弥补单一能源在不同时段的发电不稳定性和不足。MATLAB/Simulink是进行此类系统仿真的理想工具,它能够通过图形化界面方便地搭建系统模型,并进行动态模拟。 项目中包含的源码涵盖了太阳能和风能发电系统的建模、控制策略的设计、以及整个系统的动态仿真。源码的编写遵循模块化和参数化的原则,使得用户能够根据实际情况调整模型参数,从而得到更符合实际应用的仿真结果。用户界面的美观和操作的简便性,大大降低了仿真软件的使用门槛,使得非专业人士也能通过本项目进行相关研究和学习。 此外,项目还提供了详细的部署教程,即使是对MATLAB和Simulink不太熟悉的用户,也能够通过教程的指导,一步步地在本地计算机上部署和运行仿真项目。部署教程中不仅包括了软件环境的配置和源码的编译安装,还可能包括了仿真模型的加载、参数设置、结果分析等操作步骤的讲解。 本项目不仅提供了一个功能完善、界面友好的太阳能-风能混合动力植物的仿真平台,还通过详尽的教程降低了用户的使用难度,具有很高的实用价值,适用于相关专业的毕业设计或者课程设计使用。
2025-05-04 21:01:33 360KB MATLAB
1
基于等效油耗极小值算法(ECMS)的串联混合动力汽车能量管理策略程序设计与优化:Simulink模型下的油电转化因子二分法应用,基于等效油耗极小值算法(ECMS)的串联型混合动力汽车能量管理策略程序 1.基于simulink模型搭建。 2.包含控制策略模块,驾驶员模块,电机模块,发动机-发电机组模块。 3.采用二分法获得工况对应的最优油电转化因子。 ,基于等效油耗极小值算法(ECMS)的串联型混合动力车能量管理策略程序; Simulink模型搭建; 控制策略模块; 驾驶员模块; 电机模块; 发动机-发电机组模块; 二分法获得最优油电转化因子。,基于ECMS的混合动力汽车能量管理策略程序:Simulink模型下的多模块协同优化
2025-04-11 23:56:59 32KB
1