内容概要:本文详细介绍了基于混合整数线性规划(MILP)和双延迟深度确定性策略梯度(TD3)的用户侧储能系统优化运行策略。该策略旨在解决深度强化学习在储能控制中难以严格满足运行约束的问题。通过MILP确保动作的可行性,利用TD3进行优化决策,研究建立了考虑电池退化成本的运行优化模型。文章提供了详细的代码实现,包括环境建模、MILP求解器、TD3算法、增强型MILP求解器、完整训练流程、性能对比分析以及实时调度测试。此外,还深入分析了核心创新点,如约束处理机制和成本优化,并展示了算法的完整实现过程。 适合人群:具备一定编程基础,对储能系统优化、深度强化学习和混合整数线性规划感兴趣的科研人员和工程师。 使用场景及目标:①研究和开发用户侧储能系统的优化运行策略;②理解和应用MILP和TD3结合的技术来提升储能系统的运行效率和降低成本;③评估不同算法(如TD3和MILP-TD3)在储能控制中的性能差异。 其他说明:本文不仅提供了理论分析,还给出了详细的代码实现,便于读者复现实验结果。文中强调了关键实现细节,如电池退化成本模型、严格的约束处理机制以及完整的性能评估指标。通过这些内容,读者可以深入了解并实践基于MILP-TD3的储能系统优化方法。
2025-11-03 18:29:56 58KB 深度强化学习 储能系统 优化调度
1
微电网两阶段鲁棒优化经济调度的方法及其MATLAB实现。首先,构建了一个min-max-min结构的两阶段鲁棒优化模型,该模型能够应对光伏出力、负荷波动以及电价变化等不确定因素的影响。其次,利用列约束生成(CCG)算法和强对偶理论,将复杂的优化问题分解为主问题和子问题,分别对应于长期决策(如储能充放电计划、机组启停)和短期响应(如应对最恶劣场景)。通过交替求解这两部分,最终得到了能够在最不利条件下保持较低运行成本的调度方案。文中提供了具体的MATLAB代码示例,展示了如何使用YALMIP工具箱调用CPLEX求解器完成这一过程,并通过对比实验验证了鲁棒优化相对于传统方法的优势。 适合人群:从事电力系统研究、智能电网开发的技术人员,特别是关注微电网优化调度领域的学者和技术爱好者。 使用场景及目标:适用于希望深入了解并掌握微电网优化调度技术的研究人员,旨在帮助他们理解和应用先进的数学建模和优化算法解决实际工程问题,提高系统的稳定性和经济效益。 其他说明:尽管由于缺乏原始数据而导致某些结果存在细微差异,但这并不妨碍对核心思想的理解和学习。此外,文中提供的代码可以作为进一步研究的基础,鼓励读者在此基础上进行改进和创新。
2025-09-18 13:10:10 430KB
1
由于新能源发电和负荷有不确定性,为保证微电网的安全可靠运行,蓄电池作为储能装置发挥了重要作用。为充分利用蓄电池,提高微电网的经济性,建立考虑蓄电池使用寿命的微电网经济调度模型,并应用混合整数线性规划算法进行求解。以一个包含风、光、储、微型燃气轮机、柴油发电机和燃料电池的微电网为算例,对微电网并网运行方式进行经济调度优化,计算结果验证了所提模型的有效性。
1
MATLAB 中的混合整数线性规划(matlab)
2022-05-20 19:03:43 3.06MB matlab 源码软件 开发语言
针对油品应急调度突发性、弱经济性、强时间性、广地域性等特点,提出以油品短缺对社会造成的影响最小和运输总费用最低为优化目标,以物质守恒、生产能力、运输时间限制等为约束的油品应急调度的混合整数线性规划(MILP)模型。该模型求解简便快捷,能够协助决策人员根据调度优化结果迅速制定出最优方案,以满足应急调度的需要。
2022-05-05 18:11:40 325KB 工程技术 论文
1
IBM ILOG CPLEX Optimization Studio V12.8.0 Windows版本安装包和demo文件
2022-03-02 17:20:29 752.53MB cplex 混合整数线性规划
1
为准确、快速地获取配电网故障恢复最优策略,提出基于节点状态优化的故障恢复混合整数线性规划方法。首先提出节点状态变量概念及其节点属性和电源属性,在此基础上建立节点状态变量-开关状态变量的线性函数关系,即开关状态线性模型;然后运用恒功率负荷线性化方法,建立基于基尔霍夫定律的电流及电压线性等式,等式中节点电压及支路电流等状态变量受节点状态变量及开关状态变量的约束;最后形成以切负荷及开关操作次数最少为目标的故障配电网最优潮流混合整数线性规划模型,即故障恢复模型。算例仿真验证了所提模型的合理性及有效性。
1
成本敏感的学习 依赖实例的成本敏感型学习的混合整数规划方法 抽象 在这项研究中,我们研究了与示例相关的成本敏感型学习,该学习基于标签决策带来了不同的成本/回报。 这些问题源于决策模型,在数据中成本/收益信息而不是真正标签的重点领域中得到了区分。 例如,在流失预测和信用评分中,主要目的是建立预测模型和决策规则,以最大化/最小化公司的回报/成本。 传统的精度驱动的分类方法没有考虑基于实例的成本/回报。 取而代之的是,学习基于恒定的错误分类错误进行。 因此,我们提出了一种将基于实例的成本/收益纳入学习算法的一般策略。 具体而言,将学习问题表述为混合整数程序,以使总回报最大化。 考虑到混合整数线性规划问题的高计算复杂性,该模型对于大规模数据集的训练实际上可能效率低下。 为了解决这个问题,我们还提出了成本敏感型Logistic回归,这是公式化线性模型的非线性近似,这得益于使用深度学习工具进行的基于梯
2021-12-30 13:14:32 39KB Python
1
资源分配选择 使用Python中的混合整数线性规划解决资源分配问题
2021-11-28 11:48:06 4.7MB optimization python3 milp Python
1