搜索引擎基于CASME2数据集训练的微表情识别系统_支持摄像头实时检测和图片视频分析_包含面部微表情特征提取与分类算法_采用深度学习框架TensorFlow和Keras实现_集成VGG16.zip
2025-09-21 13:59:54 60.79MB python
1
基于NGSIM数据集(i-80和US101高速公路)的驾驶风格特征提取与高斯聚类分析方法。首先,通过对原始数据进行预处理,包括数据清洗、去除异常数据(如幽灵车辆)以及应用对称指数移动平均滤波算法(sEMA),确保数据的质量。接着,制定了详细的换道工况下的驾驶风格特征表,提取了三个关键特征:方向盘熵值、加速度方差和车道入侵指数,并进行了特征相关性分析。然后,利用高斯混合模型(GMM)进行聚类分析,得到了三种不同的驾驶风格类别:佛系组、战斗组和普通组。此外,还展示了代码的扩展性,可以通过简单的修改支持其他聚类算法,如SVM和K-means。实验结果显示,高斯聚类的效果优于其他方法,证明了所提方法的有效性和鲁棒性。 适合人群:交通工程研究人员、自动驾驶算法开发者、数据分析专家。 使用场景及目标:适用于需要从大规模交通数据集中提取驾驶风格特征并进行分类的研究项目。主要目标是识别不同驾驶风格的特点,为交通安全分析、智能交通系统优化提供依据。 其他说明:文中提供了具体的代码实现细节,便于读者复现实验结果。同时,强调了数据预处理和特征选择的重要性,指出这些步骤对于提高聚类效果的关键作用。
2025-09-13 13:59:03 1.52MB 特征提取 数据预处理
1
在当前快速发展的计算机视觉领域中,多目标跟踪(Multi-Object Tracking,简称MOT)和行人重识别(Re-identification,简称ReID)是两个重要的研究方向。MOT关注于视频监控场景中对多个目标的实时跟踪问题,而ReID则致力于解决跨摄像头场景下行人身份的识别问题。本项目基于深度学习框架和算法,实现了视频中行人MOT和ReID特征提取的完整流程。 YOLOv5是一个高效且先进的目标检测算法,它基于卷积神经网络(CNN),能够在视频流中快速准确地识别和定位多个目标。YOLOv5以其出色的性能在实时目标检测任务中得到广泛应用,其速度快、准确率高、易于部署的特点使其成为构建复杂视觉系统的基础组件。 Deepsort是一个强大的多目标跟踪算法,它结合了深度学习技术来改善传统跟踪算法的性能。通过将检测到的目标和已有的跟踪目标进行关联,Deepsort能够有效地处理遮挡、目标交叉等复杂场景,保证了跟踪的连续性和准确性。 Fastreid是针对ReID任务而设计的深度学习算法,它专注于从图像中提取行人的特征,并将这些特征用于识别特定的行人个体。Fastreid在特征提取和特征匹配上具有优越的性能,特别是在大规模和复杂的监控环境中,能够实现行人的跨摄像头跟踪和识别。 本项目将Yolov5、Deepsort和Fastreid三种算法相结合,通过重构源码,实现了视频中行人的检测、跟踪和身份识别的一体化处理。具体来说,首先利用YOLOv5算法进行实时视频帧中的行人检测,然后通过Deepsort算法实现对检测到的行人目标进行稳定跟踪,最后利用Fastreid算法提取行人的特征,并进行跨摄像头的ReID处理。 项目中包含的“mot-main”文件,很有可能是包含核心算法和接口的主文件夹或主程序入口。在这个文件夹内,开发者可以找到用于行人检测、跟踪和ReID的关键代码模块,以及调用这些模块的接口程序。这些代码和接口为研究人员和工程师提供了便于使用和集成的工具,从而能够快速搭建起视频行人MOT和ReID的完整系统。 此外,项目可能还包括数据预处理、模型训练、性能评估等相关模块。这些模块的集成,有助于用户自定义训练数据集,优化模型参数,以及评估跟踪和识别系统的性能。整个系统的设计兼顾了性能与易用性,适合于安防监控、智能交通、公共安全等需要实时行人跟踪和身份识别的场景。 在实际应用中,该项目可以显著提高行人跟踪和识别的准确性和效率,为用户提供强大的技术支持。例如,在城市监控系统中,可以实时地跟踪并识别视频中的特定个体,从而在紧急情况或安全事件发生时,提供及时有效的信息支持。同时,该技术在零售分析、人流量统计等场景中也具有潜在的应用价值。 基于Yolov5-Deepsort-Fastreid源码重构的视频行人MOT和行人ReID特征提取代码、接口,展现了人工智能在视频分析领域的先进技术和应用潜力,为相关领域的研究和开发提供了强有力的工具和平台。
2025-09-12 23:53:37 37KB
1
基于MATLAB的指纹特征提取与识别技术,首先阐述指纹识别的基本原理。接着分析指纹图像预处理过程,包括图像分割、参考点选取、归一化、扇区化以及Gabor滤波等技术。特征提取阶段,通过利用每个扇区灰度的尺度不变特性,计算每个像素与灰度平均值的差的平方,从而获得特征向量。在特征提取后,指纹图像会旋转11.25度,随后再次进行特征提取以生成指纹特征库。匹配识别使用基于指纹纹线结构的特征匹配算法。本研究采集四张指纹图像生成指纹库,每张图像均进行不同方向的旋转,经过仿真测试,指纹识别的准确率达到了100%。 仿真文件放在一个压缩包中,每个.m文件对应一部分功能,使用时灵活使用即可。
1
STM32F1系列是意法半导体(STMicroelectronics)推出的基于ARM Cortex-M3内核的微控制器,广泛应用于各种嵌入式系统设计。在"STM32F1高低滤波特征提取"这个主题中,我们主要关注的是如何在STM32F1微控制器上实现信号处理中的高低通滤波器功能,以及如何从处理后的数据中提取关键特征,以供后续分析或分类使用。 我们要理解高低通滤波器的作用。高通滤波器允许高频信号通过,而抑制低频信号;低通滤波器则相反,它允许低频信号通过,抑制高频噪声。在许多应用中,如声音识别、图像处理或传感器数据分析,这两种滤波器是预处理原始数据的关键步骤,可以去除噪声并突出重要信号。 在STM32F1上实现滤波器,开发者通常会利用其内置的浮点运算单元(如果有的话)或者使用定点运算来提高效率。滤波器的设计可以基于不同的算法,如巴特沃兹滤波器、切比雪夫滤波器或 Butterworth 滤波器。这些滤波器的系数可以通过离线计算得出,并存储在STM32的Flash或RAM中。 高低通滤波的实现通常涉及以下步骤: 1. 数据采集:通过ADC(模拟数字转换器)将模拟信号转换为数字信号。 2. 滤波算法:根据所选滤波器类型,使用数字滤波算法对数字信号进行处理。 3. 滤波器更新:根据实时输入数据更新滤波器状态。 4. 特征提取:从滤波后的信号中提取关键特征,如峰值、频率、能量等。 特征提取是机器学习和数据分析中的核心步骤。它包括选择、变换和组合原始数据,以创建新特征,这些特征更能反映数据的本质属性,有利于后续的分类或预测任务。例如,在声音分析中,可能需要提取声压级、频率谱、梅尔频率倒谱系数(MFCC)等特征;在传感器数据分析中,可能会关注数据的趋势、周期性或异常值。 在STM32F1上实现这一过程时,开发者需要考虑微控制器的资源限制,如计算能力、内存大小等。这可能意味着选择更高效的滤波算法,或者在特征提取阶段采取更简单的统计方法。 "STM32F1高低滤波特征提取"是一个涉及嵌入式系统编程、信号处理和特征工程的综合性课题。它要求开发者具备扎实的数字信号处理理论知识,熟练掌握C语言编程,以及一定的硬件接口操作经验。通过这样的实践,我们可以实现一个能够在嵌入式设备上运行的高效、可靠的信号处理系统,为后续的数据分析和应用提供高质量的输入数据。
2025-07-31 18:18:35 26.61MB stm32 特征提取
1
内容概要:本文详细介绍了利用OpenCV的光流特性提取技术进行人脸微表情识别的工程项目。首先解释了光流的基本概念及其在OpenCV中的实现方式,接着阐述了如何从连续视频帧中计算光流,进而提取面部特征。随后讨论了基于这些特征使用机器学习或深度学习模型对微表情进行分类的方法,并提供了相关代码示例。最后提到了所使用的两个重要数据集SAMM和CAS(ME)2,它们对于训练和测试模型至关重要,但需要经过申请流程才能获取。此外还强调了遵守使用条款的重要性。 适合人群:对计算机视觉、人脸识别感兴趣的开发者和技术爱好者,尤其是那些想要深入了解光流特性和微表情识别的研究人员。 使用场景及目标:适用于希望通过实际案例掌握OpenCV光流特性提取技术和人脸微表情识别的应用场景,如安防监控、人机交互等领域。目标是让读者能够独立完成类似的项目开发。 其他说明:文中提供的代码片段可以帮助初学者更好地理解和实践相关技术,同时提醒读者注意数据集的合法获取途径。
2025-07-14 17:30:21 615KB
1
SAR影像特征提取研究是遥感图像处理领域中的一个重要分支,其目的在于通过对合成孔径雷达(Synthetic Aperture Radar,简称SAR)图像的深入分析,从而提取出具有代表性的影像特征以供进一步处理与分析。本文主要探讨了基于纹理的SAR影像特征提取方法,并进行了系统性的比较研究。 文本提出了对SAR影像纹理特征提取的主要方法进行了综合比较,这些方法包括: 1. 小波多尺度特征提取方法:小波变换是一种数学工具,可以将图像分解为多个不同尺度的子带图像,从而有效地捕捉到不同尺度下的纹理信息。它通常用于对纹理特征进行多尺度、多层次的分析。 2. 地统计学变差函数法:地统计学是一种处理空间数据的方法,变差函数是用于描述地统计学中空间变量空间相关性的函数。在SAR影像特征提取中,变差函数可以用来描述影像的纹理特征,特别是空间相关性的分析。 3. 基于分形理论的盒子维提取方法:分形理论是研究复杂几何形态的数学理论,盒子维是衡量分形复杂性的一个参数。在SAR影像中,通过计算图像的盒子维,可以提取到反映纹理粗糙度和复杂性的特征。 4. 高斯-马尔可夫特征提取法:该方法利用了高斯随机场和马尔可夫随机场的理论,通过建立模型对SAR图像的纹理特征进行描述和提取。 5. 灰度共生矩阵提取法:灰度共生矩阵是一种统计纹理特征的方法,通过对图像中像素对的灰度值分布进行分析,可以得到反映纹理性质的统计量,如对比度、均匀性等。 6. 基于概率统计模型的提取方法:这种方法基于统计学原理,通过构建概率模型来拟合SAR图像的纹理分布,并从中提取特征。 接着,研究利用了支持向量机(SVM)分类器,该分类器以较高的分类精度而著称,来对不同纹理特征提取方法的效果进行验证。实验结果显示,对于单纹理提取方法而言,基于概率统计模型的提取法能较好地提取SAR影像的纹理特征。而对于两种纹理提取的组合方法,将灰度共生矩阵和基于分形理论的盒子维提取方法结合,能够更好地提取SAR影像的纹理特征。 SAR影像的成像机理具有一定的复杂性,因为SAR是通过发射电磁波并接收由地物反射回来的信号来获取地表信息的,其成像过程不受光照条件的影响,因此无论昼夜均可进行观测。但是,SAR影像的解译难度较大,纹理特征提取的方法能够帮助科研人员更有效地从复杂的影像数据中获取有用信息。基于此,研究SAR影像特征提取的方法对于遥感影像分类技术的发展具有重要的意义。 本文研究了SAR影像特征提取的多纹理方法,并对这些方法进行了实验验证。研究结果为SAR图像的特征提取提供了新的思路和方法,对SAR影像处理与分类技术的发展具有重要的推动作用。此外,本文还为其他基于遥感技术的科研工作提供了宝贵的参考和借鉴。
2025-07-04 11:03:38 524KB 首发论文
1
计算机视觉与模式识别领域近年来取得了长足的发展,特别是在手势识别方面,它作为人机交互的重要方式之一,已经被广泛应用于智能控制系统、虚拟现实以及自动化设备中。本项目是基于Python3.7编程语言,结合OpenCV库,针对手势轮廓特征提取及机器学习分类技术的深入研究,并且完整地展示了从手势图像采集、预处理、特征提取,到模型训练以及最终的分类识别整个流程的开发步骤。 项目实施过程中,开发者需要对Python编程语言有较深入的理解,同时对OpenCV库的操作应熟练掌握。OpenCV库作为计算机视觉领域最流行的开源库之一,它提供了大量的计算机视觉和机器学习算法,使得开发者可以快速地进行图像处理和分析。 手势轮廓特征提取是手势识别中的关键技术。在这个项目中,开发者需要运用图像处理技术,如边缘检测、轮廓提取等,来准确地从背景中分离出手势图像,并获取手势的轮廓信息。这些轮廓信息将作为后续机器学习算法的输入特征,用于训练分类模型。 机器学习分类是通过训练算法对特征数据进行学习,从而实现分类任务的过程。在这个项目中,可能会使用到的机器学习模型包括支持向量机(SVM)、随机森林、神经网络等。这些模型需要基于提取到的特征数据进行训练,以达到准确分类手势的目的。 此外,项目中还包含了手势库的构建以及傅里叶描述子的使用。手势库的构建是为了存储大量的手势图像样本,它们将被用于训练和测试机器学习模型。傅里叶描述子则是一种用于形状描述的方法,它可以将轮廓信息转换为频域信息,这有助于更好地提取和表示形状的特征。 整个项目的开发是在Windows 10环境下进行的,这为开发者提供了稳定的操作系统平台。而在项目中提到的“gesture-recognition-master”文件夹,可能是包含了项目源代码、数据集、预训练模型以及其他重要文件的核心目录,是整个项目实现的关键部分。 此外,项目的文档资源包括“附赠资源.docx”和“说明文件.txt”,这些文档资料将为项目的开发提供指导和帮助。开发者可以通过阅读这些文档来了解项目的详细说明、安装配置指南以及使用方法等重要信息。 这个项目是计算机视觉与模式识别领域中的一个实际应用案例,它不仅涵盖了手势识别技术的关键环节,还结合了机器学习和深度学习方法,具有很高的实用价值和研究意义。通过对项目的深入分析和学习,开发者可以掌握手势识别的核心技术,为未来在相关领域的发展打下坚实的基础。
2025-06-28 12:02:03 8.85MB
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 想轻松敲开编程大门吗?Python 就是你的不二之选!它作为当今最热门的编程语言,以简洁优雅的语法和强大的功能,深受全球开发者喜爱。该文档为你开启一段精彩的 Python 学习之旅。从基础语法的细致讲解,到实用项目的实战演练,逐步提升你的编程能力。无论是数据科学领域的数据分析与可视化,还是 Web 开发中的网站搭建,Python 都能游刃有余。无论你是编程小白,还是想进阶的老手,这篇博文都能让你收获满满,快一起踏上 Python 编程的奇妙之旅!
2025-06-26 21:33:33 4.62MB python
1
内容概要:本文介绍了LSTM-VAE(基于长短期记忆网络的变分自编码器)在时间序列数据降维和特征提取中的应用。通过使用MNIST手写数据集作为示例,详细展示了LSTM-VAE的模型架构、训练过程以及降维和重建的效果。文中提供了完整的Python代码实现,基于TensorFlow和Keras框架,代码可以直接运行,并附有详细的注释和环境配置说明。此外,还展示了如何通过可视化手段来评估模型的降维和重建效果。 适合人群:对深度学习有一定了解的研究人员和技术开发者,尤其是关注时间序列数据分析和降维技术的人群。 使用场景及目标:适用于时间序列数据的降维、特征提取、数据压缩、数据可视化以及时间序列的生成和还原任务。目标是帮助读者掌握LSTM-VAE的原理和实现方法,以便应用于实际项目中。 其他说明:本文提供的代码可以在本地环境中复现实验结果,同时也支持用户将自己的数据集替换进来进行测试。
2025-06-22 23:22:32 498KB
1