电影评分数据集-用于电影推荐系统。有两个数据集。 数据集1:包括movies.csv和ratings.csv两个文件。movies.csv文件总共有27,279行,除第1行是表头外,每行用3列表示一部电影,分别为电影id(movieId)、电影名称(title)和电影类型(genres)。ratings.csv文件总共有20,000,264行,除第1行是表头外,每行用4列表示一位用户对一部电影的评分,分别为用户id(userId)、电影id(movieId)、评分(rating)和评分时间(timestamp)。这里的评分时间是用unix时间戳表示的。在这个数据集中并没有提供用户的个人信息,可能是出于保护用户隐私的考虑。 数据集2:ratings.dat是另一个电影评分数据集。包含了6000多位用户对近3900个电影的共100万(1,000,209)条评分数据,评分均为1~5的整数,其中每个电影的评分数据至少有20条。
1
电影评分数据集是一种常用的数据资源,对于理解和研究用户行为、推荐系统、情感分析等领域具有重要意义。这个数据集包含了用户对电影的评分以及用户之间的信任度信息,为数据分析提供了丰富的素材。接下来,我们将深入探讨这些核心知识点。 **评分数据**(ratings.txt)通常包含了用户ID、电影ID和用户给予的评分三个关键字段。用户ID标识了进行评分的个体,电影ID则对应了被评价的电影。评分通常是介于1到5之间的一个整数,代表用户对电影的满意度。通过分析这些评分数据,我们可以进行多种统计分析,例如计算每部电影的平均评分、找出最受好评和最差评的电影等。此外,评分数据也是构建推荐系统的基础,通过协同过滤算法,可以预测用户对未评分电影可能的喜好程度,从而提供个性化的推荐。 **信任关系数据**(trust.txt)在社交网络分析中占有重要地位。信任度信息通常由用户自己设定,表示他们对其他用户评价的信任程度。这种直接联系的信任关系可以形成一个复杂的网络结构,其中每个节点代表一个用户,边的权重表示用户间的信任水平。分析这个网络可以帮助我们理解用户群体的行为模式,例如识别出意见领袖或者发现社区结构。在推荐系统中,结合信任关系可以提高推荐的准确性和可信度,因为人们往往更倾向于信任朋友或熟悉人的推荐。 **readme.txt**文件通常包含关于数据集的详细信息,如数据来源、数据结构、数据收集过程、数据清洗方法等。它是理解和使用数据集的关键,因为正确的解释和理解数据的背景和处理方式能够避免误解和错误的分析结果。 综合这些信息,我们可以进行以下分析: 1. **用户行为分析**:探索用户评分的分布特征,比如平均评分、评分分布、用户评分的活跃度等。 2. **电影分析**:根据评分数据评估电影的受欢迎程度,挖掘热门和冷门电影。 3. **信任网络分析**:构建用户信任网络,研究网络的密度、中心性、聚类系数等特性,了解用户群体的信任模式。 4. **推荐系统建模**:利用评分数据和信任关系数据构建基于用户或物品的协同过滤模型,提高推荐的精度和个性化程度。 5. **社会影响力研究**:分析信任网络中的意见领袖,了解他们的影响力如何影响其他用户的选择。 这个电影评分数据集为我们提供了丰富的研究素材,不仅可以用于理解用户行为和电影市场,还可以深入探索社交媒体中的信任关系及其对决策的影响。通过深入分析和应用这些数据,我们可以为电影产业、推荐系统设计以及社会网络研究带来有价值的洞见。
2025-12-31 16:24:24 92KB 数据集
1
资源名称:js数据集-电影评分数据-movieles-可用于做毕设实验.zip 内容概要:是一款数据集,电影评分数据,已经做好了分类和数据说明。特别简单易用。 关键信息:可以用于数据分析,大数据,推荐系统的学习和实验,数据成熟适合学生党,考研党使用。 适用人群:学生,前端工程师,项目经理,软件公司,软件教师,计算机学生 使用场景:学习,研究生学习,算法工程师,学生,毕业设计,课堂作业,个人练习,css练习,二次开发
1
28 部电影-超 70 万 用户-超 200 万条 评分评论 想看数据建议用notepad++打开 用于分析类型 推荐系统 情感/观点/评论 倾向性分析 豆瓣电影
1
MovieLens 20m 电影推荐数据集包含 138493位 用户对 27278部 电影的 20000263项 电影的评分(1-5分),电影标签数为 465564个,数据采集自网站 movielens.umn.edu,时间段为 1995.01-2015.03。
2023-01-25 23:06:32 417.67MB 推荐系统 电影推荐 电影评分 电影评价
1
python数据挖掘电影评分分析-豆瓣电影数据与票房数据分析.pdf
2022-12-28 10:00:36 819KB 文档资料
1
MovieLens 电影推荐数据集包含 943个 用户对 1682部 电影的 100000 个 电影的评分(1-5分),数据采集自网站 movielens.umn.edu,时间段为 1997.09-1998.04。
2022-06-27 16:08:11 417.67MB 推荐系统 电影推荐 电影评价 电影评分
1
MovieLens 电影推荐数据集包含 943个 用户对 1682部 电影的 100000 个 电影的评分(1-5分),数据采集自网站 movielens.umn.edu,时间段为 1997.09-1998.04。
2022-06-15 20:08:04 417.67MB 推荐系统 电影推荐 电影评价 电影评分
1
数据集包括313部排名靠前电影的豆瓣评分,豆瓣评分人数,短评数量,影评数量,IMDb评分,IMDB评分人数还有部分实际票房。Excel格式。
1
c#窗体运用程序。很形象的运用了c#所学知识!
2022-05-18 19:34:50 694KB c#窗体运用程序
1