导读:文介绍了一种掉电后备电源的设计,采用超级电容作为储能元件可长期浮充,大电流放电,提高了使用寿命;采用升压型拓扑,优化了超级电容容量配置,可在5V@5A条件下可在5V@5A 条件下,持续工作10s,并在电容因欠压停止工作时,可迅速关断输出,输出电压单调下降,不产生振荡,电性指标满足绝大。   1 引言   测量仪器、数据采集系统、伺服系统以及机器人等重要单元或关键部件需在非正常掉电时进行状态记录和必要的系统配置,使用电池往往由于长期浮充致使寿命减少,且需定期更换。超级电容器(Super Capacitor)兼有常规电容器功率密度大、充电电池比能量高的优点,可进行高效率快速充放电,且可长 【电源技术中的一种掉电后备电源设计方案】 在电源技术领域,设计一款高效的掉电后备电源至关重要,尤其是在关键设备如测量仪器、数据采集系统、伺服系统和机器人等需要在非正常断电时保持运行的场景。传统的电池解决方案由于长期浮充导致寿命缩短,需要定期更换,而超级电容器作为一种新型储能元件,具有高功率密度、快速充放电能力和长寿命,成为理想的替代方案。 本文介绍的掉电后备电源设计采用超级电容作为储能元件,能够进行长期浮充和大电流放电,从而提高了整体系统的使用寿命。设计中,选择了升压型拓扑结构,通过优化超级电容的容量配置,确保在5V@5A的条件下可以连续工作10秒。当电容电压低于阈值时,系统能够迅速关闭输出,避免电压振荡,保证输出电压平稳下降,满足电气性能要求。 在具体设计过程中,超级电容的容量选取是一个关键因素。考虑到需要提供短暂的掉电保护,设计者采用尽量小的电容容量以延长工作时间。通过对比Buck、Buck-Boost和高频变压器隔离等多种拓扑结构,最终选择了非隔离升压拓扑,这种拓扑能够在经济性、效率和功率密度方面达到良好的平衡。在这个设计中,超级电容的电压范围为3V-5V,最大输入电流为18A-20A,输出电压为+5V@5A,保持时间为10秒。 在主功率设计中,采用了Boost升压电路,包括超级电容、Boost拓扑和LC滤波部分。MOSFET和电感的选择需考虑高电流承载能力和热管理,以防止过流或电感饱和导致的损坏。同时,LC滤波电路有助于降低电压纹波,提高输出稳定性。 驱动控制部分采用UCC2813芯片,设定开关频率为100kHz,直接驱动MOSFET,实现高效转换。 在关断电路设计上,采用了TL431基准电路和LM339运放比较电路组成的滞环比较器,当超级电容电压低于3.5V时,系统将可靠地关闭输出,确保电压单调下降,避免产生不必要的波动。 实验结果显示,该设计在满载5A和空载条件下,输出电压和控制占空比波形稳定,电压纹波控制良好,关断过程符合预期,证明了设计方案的有效性和可靠性。 这款基于超级电容的掉电后备电源设计方案结合了超级电容的优越特性,实现了高效、快速响应和可靠的电源保护,为关键设备提供了安全、稳定的备用能源,适用于多种对电源稳定性要求较高的应用场景。
2025-07-15 10:25:51 300KB 电源技术
1
本例介绍的数控直流稳压电源电路 ,采用控制按钮和数字集成电路,采 用LED发光二极管来指示输出电压值,输出电压为 3-+15V共8档可调。最大输出电流为5A。该数控百流稳压电源电路由+l2V稳压电路、电压控制/显示电路和稳压输出电路组成。 《数控直流稳压电源电路设计详解》 数控直流稳压电源是现代电子设备中不可或缺的组成部分,它能够提供稳定、可调节的直流电压,适用于多种应用场景。本篇将详细解析一款采用控制按钮和数字集成电路的数控直流稳压电源电路设计,该电路能够实现3到+15V共8档电压调节,最大输出电流可达5A。 我们来看电路的基础结构,它主要由三个部分构成:+12V稳压电路、电压控制/显示电路以及稳压输出电路。 +12V稳压电路是整个电源的核心,它由电源变压器T、整流桥堆UR、滤波电容器Cl、C2、C6、C7以及三端稳压集成电路IC1组成。电源变压器T将输入的交流220V电压降至合适的电压等级,经过整流桥UR转换为脉动直流电,随后通过电容器进行滤波,最后由IC1(如LM7812或CW7812)进行稳压,输出稳定的+12V电压,供其他部分使用。 电压控制/显示电路则负责电压的调整和显示。它包括控制按钮Sl、复位按钮S2、电阻器R0-R11、电位器RP、电容器C3-C5、施密特触发器集成电路IC2、十进制计数/脉冲分配器集成电路IC3、电子开关集成电路IC4、IC5以及LED发光二极管VL1-VL8。按下控制按钮Sl,电路产生脉冲,通过IC3进行计数,改变输出电压。每个电压档位对应的LED会点亮,直观显示当前输出电压。 稳压输出电路由三端可调稳压集成电路IC6(如LM317)、电阻器R12和滤波电容器C6-C9构成。IC6能够根据外接电阻R12的设定输出不同电压,实现电压的精细调节。 在实际操作中,接通电源开关SO,交流220V电压经过变压器T降压、整流桥UR整流及滤波电容滤波,一部分供给IC6作为输出电压,另一部分通过IC1稳压得到+12V,为IC2-IC5提供工作电源。IC3在接收到脉冲信号后,其输出端依次轮流输出高电平,控制电子开关IC4的开闭,从而改变电阻网络,调节稳压输出电压。复位按钮S2用于将电路返回到+3V的最低电压档。 在元器件选择上,电阻器R1-R12需选择耐热性能良好的金属膜电阻或碳膜电阻,可变电阻器RP选择有机实心类型。电容Cl和C8使用16V的铝电解电容,C2-C6和C9选用独石电容,C7则需要25V的铝电解电容。发光二极管VL1-VL8应选用直径为3mm的型号。整流桥UR选择2A、50V的规格。其他集成电路如IC2(CD4093)、IC3(CD4017或MCl4107)、IC4和IC5(CD4066)以及IC6(LM317)均需选用对应型号。电源开关S0应选250V、5A触头电流负荷的,而S1和S2选用微型动合按钮。 这款数控直流稳压电源电路设计巧妙地结合了数字控制与模拟电路,实现了精确的电压调节与直观的电压显示,广泛适用于实验室、教学、工程设计等领域。了解并掌握这种电路设计,对于提升电子技术的实践应用能力具有重要意义。
1
DSP C2000系列主控CLLC谐振电源方案的MBD框架程序:Matlab仿真生成硬件控制代码,快速验证与调试参考,适用于多种电源产品设计,独立编译,便捷下载进芯片。,基于DSP C2000系列主控的CLLC谐振电源MBD框架程序:Matlab仿真生成硬件控制代码方案,支持快速验证与自主设计平台适应调整。,DSP C2000系列主控CLLC谐振电源方案MBD框架程序。 此文件matlab2021仿真生成硬件控制代码方案。 可用于迅速验证。 采用2021版本分析和导出硬件系统实现代码,开发为初版, 硬件系统调试参考: *已进行Ti样板硬件系统匹配。 *采用图为和国电赛斯实际双向电源产品修改部分关键功率件后做了测试。 (此部分工作量比较大) *也可以自己改端口和数控参数再重新生成适应自己的设计平台。 为母版程序。 此文件不依赖CCS编辑编译,可直接用uniflash工具将out文件下载进芯片。 ,DSP; C2000系列主控; CLLC谐振电源方案; MBD框架程序; matlab2021仿真; 硬件控制代码; 迅速验证; 2021版本; 硬件系统实现代码; 初版; Ti样板硬件匹配
2025-07-02 13:12:50 832KB xbox
1
电赛用ADS1256核心原理图及PCB图详解:优秀布局布线与电源滤波设计资源附参考程序,ADS1256原理图与PCB图详解:优质设计展现卓越性能,附参考程序资源与3D封装说明,ads1256原理图 pcb图 参考程序本资源主要核心是ads1256的原理图 pcb源文件(ad软件格式) 原理图上标注了详细介绍。 考虑周全的设计,充足的电源滤波电容等,优秀合理的pcb布局布线,pcb有丝印注明,同时采用了3d封装以方便配合结构设计。 电赛的时候用的,表现非常好 文件包含一个参考程序 ,核心关键词如下: ads1256原理图; pcb源文件(ad软件格式); 详细介绍; 电源滤波电容; 优秀合理的pcb布局布线; 丝印注明; 3d封装; 参考程序。,ADS1256原理图与PCB设计资源包:详尽布局布线,优秀电源滤波,3D封装配合结构设计
2025-06-10 21:51:14 824KB sass
1
模电 直流可调稳压电源设计 Multisim14 仿真报告 利用三极管、二极管基本特性,稳压电源知识设计相应模拟电路。 (1)用集成芯片制作一个0~15V的直流电源; (2)功率≥12W; (3)电源指示灯电流≤10mA; (4)具有过压、过流保护功能; LM317 LM337芯片3087 模电技术在现代电子设计中占有重要地位,它涉及电子元件的基本工作原理及其应用。在直流可调稳压电源设计中,模电技术更是发挥着关键作用。本报告详细介绍了如何利用三极管、二极管的基本特性,结合稳压电源的知识,设计出一个直流电源,并通过Multisim14软件进行仿真。 直流可调稳压电源设计的核心在于提供一个稳定的直流电压输出,并具备一定的功率容量以满足负载需求。本设计要求制作的直流电源输出范围为0~15V,功率不小于12W,这需要在设计时仔细考虑电路的功率密度和散热问题。电源指示灯的设计也是不可或缺的部分,它需要一个电流在10mA以下的稳定工作状态,以便于用户了解电源的工作状态。此外,设计还加入了过压和过流保护功能,以确保电源在异常情况下能够自动切断输出,保护负载和电源本身。 在具体实现方面,本设计采用了LM317和LM337这两款集成芯片。LM317是一款正向可调输出的三端线性集成稳压器,而LM337则是其负向可调输出的对应产品。这两款芯片都能够提供稳定的输出电压,并且具有很好的温度系数,适合用于要求严格的直流电源设计中。3087可能是某种型号的稳压芯片或元件编号,但具体信息需查阅详细数据手册。 本报告采用的仿真软件Multisim14是一款由National Instruments开发的电子电路仿真软件,它能够提供直观的电路设计界面和详尽的电路分析工具,是电子工程设计中常用的仿真工具之一。 在文件名称列表中,我们可以看到一系列文件名,它们包含了报告的各个部分,如引言、设计过程、仿真结果等。这些文件将详细描述整个设计过程,包括理论基础、电路设计、仿真测试和结论等。文件中的图片和文档格式表明,报告将采用图文并茂的方式,使内容更加直观易懂。 根据上述信息,我们可以归纳出以下几个知识点: 1. 模电技术在直流稳压电源设计中的应用。 2. 直流稳压电源的基本要求,包括输出电压范围、功率、电源指示灯设计、过压过流保护等。 3. LM317和LM337集成稳压芯片的功能和特性。 4. Multisim14仿真软件在电路设计和测试中的作用。 5. 仿真报告的构成,包括引言、设计过程、仿真测试结果和结论等内容。 这份仿真报告不仅仅是一个直流稳压电源的设计说明书,它还涵盖了模电技术的应用,电源设计的关键技术点,以及仿真软件在工程设计中的重要性。通过这份报告,工程师和技术人员可以了解如何将理论知识应用于实际电路设计,并通过仿真软件验证设计的正确性和可行性。
2025-05-27 21:21:09 125KB 开发语言
1
内容概要:本文详细介绍了利用51单片机和Proteus仿真平台设计并实现一个基于PID算法的开关电源系统。首先,描述了电源部分的构建,包括220V交流电整流滤波得到18V直流,再通过7805稳压芯片转换为5V直流供单片机使用。接下来,阐述了电压调节部分,即通过buck开关变换电路实现5-12V的可调节电压输出。核心部分是单片机控制,采用PID算法输出PWM波来精确控制输出电压。此外,还涉及了键盘输入、数据采集(ADC0832)以及显示(LCD1602)等功能模块的具体实现方法。最后,通过Proteus仿真验证了整个系统的功能。 适用人群:对嵌入式系统、单片机编程及电力电子感兴趣的学习者和技术人员。 使用场景及目标:适用于高校实验课程、个人项目开发或企业产品研发阶段,旨在帮助读者掌握51单片机的基本应用、PID控制理论及其在实际工程中的运用。 其他说明:文中提供了详细的代码片段和调试经验,有助于初学者更好地理解和实践。同时强调了一些常见问题及解决方案,如PID参数调整、ADC读取时序、键盘防抖处理等。
2025-05-11 16:20:47 713KB
1
基于Matlab的5V反激式开关电源仿真设计:电流电压双闭环PID控制及结构细节详解,基于Matlab simulink的5V反激式开关电源设计,双闭环PID控制下的仿真研究及详细计算分析,5V2A反激式开关电源仿真 基于Matlab simulin仿真软件设计,采用电流电压双闭环反馈PID控制方式,输出电压恒定5V 输入85-265AC 结构:单向桥式?反激变器 详细的反激Mathcad详细计算,包含mos,二极管选型,变压器设计计算,钳位电路计算 ,5V2A反激式开关电源仿真;Matlab simulink仿真软件;电流电压双闭环反馈PID控制;恒定5V输出电压;85-265AC输入;单向桥式反激变换器;mos选型;二极管选型;变压器设计计算;钳位电路计算,基于Matlab仿真的5V2A反激式开关电源设计:电流电压双闭环PID控制,详细Mathcad计算解析
2025-04-10 15:18:08 1.9MB kind
1
### 基于UC3842反激式开关电源的设计 #### 摘要与背景 随着电力电子技术的迅速发展,电力电子设备在工作和生活中扮演着越来越重要的角色。电子设备对于可靠电源的需求日益增加。特别是自20世纪80年代以来,计算机电源已经全面实现了开关电源化,完成了电源技术的重大变革。开关电源通过控制开关晶体管的开通与关断时间比来维持稳定的输出电压。通常,这种类型的电源由PWM控制IC和MOSFET构成。 本文介绍了一款基于UC3842开关电源芯片设计的新型单端反激式、宽电压输入范围、固定输出电压为12V8A(即96W)的开关稳压电源。该电源适用于需要较大电流的直流场合,例如为汽车电瓶充电。 #### 关键词解析 - **开关电源(Switching Power Supply)**: 利用现代电力电子技术,通过控制开关晶体管的开断时间比例来维持输出电压稳定。 - **反激变换(Instead Stir Up Transformation)**: 反激式变换器是一种常见的非隔离型DC/DC变换器,适用于小功率场合。它能在输入电压高于或低于输出电压时工作。 - **RCD箝位(RCD Clamp)**: RCD箝位电路用于减少反激式变换器中的电压尖峰,保护开关管不受过压损坏。 - **UC3842**: 这是一款专为离线电源和DC/DC转换器设计的高度集成的PWM控制器,适用于高性能、高效率的开关电源设计。 #### 设计原理 UC3842是一种高度集成的PWM控制器,具有多种功能,包括软启动、电流限制、故障保护等。在反激式变换器设计中,UC3842能够精确控制开关频率,从而实现高效的能量转换。UC3842芯片的典型应用电路包括: - **软启动**: 通过内部软启动电路,可以控制启动过程中的电流上升速度,避免过大的冲击电流。 - **电流限制**: UC3842内置了电流限制功能,可以在负载变化时自动调整输出电压,确保系统的稳定性。 - **故障保护**: 包括过温保护、过流保护等功能,增强了系统的可靠性。 #### 系统框图与工作原理 实现本设计的核心部分在于PWM芯片的选择及其应用。UC3842作为设计的核心元件,在系统框图中起到至关重要的作用。系统框图显示了整个开关电源的组成部分,包括输入电源、PWM控制器、驱动电路、主开关、变压器、输出整流滤波等关键组件。 - **输入电源**: 提供宽范围的输入电压,以便适应不同的应用场景。 - **PWM控制器(UC3842)**: 控制主开关的通断,调节输出电压。 - **驱动电路**: 将PWM信号放大,驱动主开关(MOSFET)。 - **主开关(MOSFET)**: 在PWM信号的控制下,实现能量的转换。 - **变压器**: 实现电压变换和电气隔离。 - **输出整流滤波**: 整流滤波后的输出电压提供给负载。 #### 技术特点 - **高效率**: 采用UC3842的开关电源能够在较宽的输入电压范围内保持高效率。 - **宽输入电压范围**: 支持从9V到36V的输入电压范围。 - **稳定的输出**: 即使在输入电压波动较大的情况下,也能保持稳定的12V输出电压。 - **保护功能**: 内置过流保护、过温保护等多种保护机制,提高了系统的安全性和可靠性。 #### 应用场景 - **汽车电子**: 如为汽车电瓶充电、车载电子设备供电等。 - **工业控制**: 适用于需要稳定电源的各种工业控制场合。 - **通信设备**: 为通信基站、数据中心等提供稳定的电源支持。 基于UC3842的反激式开关电源设计不仅满足了现代电子设备对于高效、可靠电源的需求,而且其广泛的输入电压范围和稳定的输出特性使其成为多种应用场景的理想选择。
2025-04-08 17:01:42 216KB 基于UC3842反激式开关电源的设计
1
反激式开关电源是一种广泛应用的电源转换器设计,尤其在低功率应用中,如电子设备、通信设备和消费电子产品中。这种电源结构以其简洁、高效和成本效益高的特性而受到青睐。本文将深入探讨反激式开关电源的设计原理、关键参数计算及分析方法。 反激式开关电源的基本工作原理: 反激式开关电源由开关器件(通常是MOSFET或IGBT)、变压器、电感、电容等核心组件构成。在开关周期中,当开关器件导通时,能量通过变压器初级线圈储存于磁芯中;当开关断开时,磁能通过变压器次级释放到负载,为负载供电。由于变压器磁通方向的改变,这种设计允许输入和输出电压极性相反,因此称为“反激”。 设计反激式开关电源的关键步骤: 1. **确定输出功率**:首先需要知道电源需要提供多少功率,这将决定其他组件的选择,如变压器的大小、电容容量和开关器件的额定电流。 2. **选择开关频率**:开关频率影响电源的尺寸和效率。较高的频率可以减小变压器和滤波电容的尺寸,但会增加开关损耗。一般情况下,开关频率在几十到几百kHz之间。 3. **设计变压器**:变压器是反激电源的核心,需要考虑磁芯材料、线圈匝数比、初级和次级电感以及漏感。磁芯的选择应基于工作频率和所需功率,以确保最小的损耗。初级和次级线圈的匝数比决定了输入和输出电压的关系。 4. **计算电容和电感值**:电容用于滤波和稳定输出电压,电感则与变压器配合存储和释放能量。电容值的计算涉及输出纹波电压的容忍度,而电感值则取决于开关频率和变压器的漏感。 5. **确定保护机制**:为了防止过压、过流和热过载,需要在设计中加入保护电路,如过电压保护(OVP)、过电流保护(OCP)和热关断。 6. **效率优化**:通过选择合适的开关器件、优化控制策略以及热管理,可以提高电源的效率。此外,轻载和重载条件下的效率也需考虑。 计算分析方法: 在设计过程中,需要进行以下计算: - **磁芯窗口面积和线径计算**:根据变压器的功率和频率来确定磁芯的窗口面积,进而计算线径。 - **变压器漏感计算**:漏感会影响输出电压纹波和瞬态响应,需要通过变压器结构和线圈参数计算。 - **开关器件的开通和关断时间**:这些参数影响开关损耗和电磁干扰(EMI)。 - **稳态和瞬态性能分析**:通过电路模型和模拟工具,如SPICE,可以预测电源在不同负载条件下的性能。 总结: 反激式开关电源设计是一个涉及多方面因素的复杂过程,包括功率需求、开关频率、变压器设计、电容和电感的选择,以及保护和效率优化。正确理解并执行这些计算和分析,是构建高效、可靠电源的关键。在实践中,设计师通常会结合理论计算和实际测试,以确保设计满足预期的性能标准。
2025-04-02 19:14:09 652KB 反激式开关电源 计算分析
1
本文介绍了一种基于TOP244Y的12V新型本安电源的设计方案。该系统的核心选用Power Integration公司的开关电源芯片TOP244Y,在开关电源的基础上,外加过压保护电路和过流保护电路,使电压稳定在12V.经过压保护测试和过流保护测试验证,该电源满足本安要求,从而证实了本方案的可行性。 《12V新型本安电源设计方案详解》 随着我国煤矿自动化水平的不断提升,本安电源在矿井安全系统中的重要性日益凸显。本篇文章详细介绍了基于TOP244Y芯片设计的一种12V新型本安电源,旨在确保电源在恶劣环境下能够稳定、安全地工作,以保障矿井的安全运营。 1. 本安电源概述 本安电源是矿井电气设备的核心部件,尤其在煤矿环境中,由于存在易燃易爆物质,必须采用本质安全设备以防止火花引发事故。本安电源的设计要求严格,不仅要提供稳定的电压输出,还要具备过压和过流保护功能,以确保系统的可靠性。 2. 系统设计原则与方案 设计的12V新型本安电源遵循煤矿用直流稳压电源的标准,输入电压为95V~140V,输出纹波电压不超过12V的5%。设计中选用了Power Integration公司的TOP244Y开关电源芯片,通过过压保护和过流保护电路,实现了电源的稳定和安全运行。 3. 硬件电路设计 - 开关电源电路:TOP244Y芯片将127V交流电转换为23V直流电。芯片内置多种保护功能,如欠压、过压保护,可通过调整占空比来稳定输出电压。 - 过压保护电路:当输出电压超过12V时,过压保护电路会启动,通过快速可控硅和光电耦合器控制开关电源芯片的失能,从而切断电源输出,防止过电压风险。 - 过流保护电路:通过比较取样电压和预设阈值,一旦电流超过设定值,过流保护电路将关闭输出,通过MOS管Q8控制电流源,确保系统安全。 4. 性能测试与验证 设计的电源需经过严格的性能测试,包括输入电压的适应性测试、输出电压的稳定性测试以及过压和过流保护的实效性验证,以确保其满足本安标准。 本设计方案的创新之处在于巧妙地结合了TOP244Y芯片的性能和附加的保护电路,确保了电源在煤矿复杂环境下的安全性。这一设计为矿井监控、通讯和仪表自动化系统提供了可靠的电源支持,提升了矿井安全防护能力,对于推进煤矿现代化有着重要意义。
2024-08-15 16:08:39 242KB TOP244Y 本安电源 设计方案
1