A1耳机放大器介绍: 拜亚动力A1是目前耳机HiFi界首屈一指的顶级耳放,这么简单的一个“小盒子”里面却集合了无数调音技术。和其他耳机放大器不同的是,拜亚动力A1采用自适应阻抗技术,可以根据不同耳机的参数调节输出的功率,智能化程度很高,适用面很广。另外,拜亚动力公司在研发每一款耳机的同时均会以A1耳机放大器进行匹配测试,所以说,拜亚动力A1和DT990是出自同一门下的“西装”,自然会发出“西装”应有的声音。 拜亚动力DT990+A1耳机放大器: A1耳机放大器问世很多年了,但是没有几个完善的电路,先贴出该机的原理图,有需要的请下载。
2026-01-29 17:01:23 688KB 耳机放大器 电路方案
1
内容概要:本文详细介绍了如何利用Simulink和PLECS进行三相桥式电路的联合仿真,实现能量双向流动。主要内容涵盖三个方面:一是Simulink与PLECS的联合仿真环境搭建,Simulink负责控制系统,PLECS负责电力电子电路的模拟;二是SVPWM调制方式的具体实现,包括参数定义、三相正弦波信号生成、扇区判断和作用时间计算;三是双闭环控制策略的应用,即母线电压外环和电流内环控制,确保直流母线电压稳定和电流快速响应。此外,文中还提供了具体的MATLAB代码片段,帮助理解和实现这些控制策略。 适合人群:从事电力电子领域的工程师和技术人员,尤其是对三相桥式电路及其控制策略感兴趣的读者。 使用场景及目标:适用于需要进行三相桥式电路仿真和控制策略验证的研究和开发项目。目标是掌握Simulink与PLECS联合仿真的方法,理解SVPWM调制和双闭环控制的工作原理,最终实现高效的能量双向流动。 其他说明:文中提到的仿真环境支持Simulink 2022以下版本,默认提供2016b版本,如有特殊版本需求,请联系作者获取相应版本。
2026-01-26 22:33:58 377KB
1
该文件描述了一种通用的,非隔离式,高效率,高功率因数(PF)LED驱动器。它可以在90 VAC ~ 265 VAC输入电压范围内为LED灯串提供额定电压200V,额定电流90MA的驱动。此LED驱动器是使用LinkSwitch-PH系列的LNK419EG器件设计的。 本文档包含LED驱动器规格、电路原理图、PCB设计图、物料清单、变压器规格文件和典型性能特征。
2026-01-26 10:43:00 7.47MB 电路方案
1
描述 CAN 和 CANopen 是传统现场总线协议,适用于工厂自动化中的许多应用。只要高电压有可能损坏终端设备,就需要隔离器件。此隔离式 CAN 灵活数据 (FD) 速率中继器参考设计在两个 CAN 总线段之间增加了电气隔离。总线段任一侧的 CAN 帧都被中继到另一侧。此 TI 参考设计中的 CAN 收发器和仲裁逻辑支持高达 2Mbps 的 CAN FD 速度。此 TI 参考设计由 6V 到 36V 的宽电压电源供电。 特性 隔离式 CAN FD 收发器具有 3000 VRMS 隔离等级 支持经典 CAN 和 2Mbps CAN FD 单个 24V 工业电源 5V 至 36V 的宽电源电压范围 板载生成隔离电压
2026-01-25 11:03:17 4.75MB 电路方案
1
基于S-S与LCC-S结构的WPT无线电能传输电路模型:输出电压闭环PI控制及结构参数设计说明计算——Matlab Simulink环境,基于S-S或LCC-S结构的WPT无线电能传输电路模型,采用输出电压闭环PI控制。 另附带电路主结构参数设计说明和计算。 运行环境为matlab simulink ,基于S-S或LCC-S结构; WPT无线电能传输电路模型; 输出电压闭环PI控制; 电路主结构参数设计; Matlab Simulink运行环境,基于S-S/LCC-S结构的WPT电路模型:主参数设计与PI控制闭环研究
2026-01-23 17:36:58 167KB edge
1
应用领域/适用场景:乘用车 商用车 方案亮点:传感器通过无线信号把压力温度,电池电压等信息发送到仪表台,驾驶员实时查看轮胎状态,保障行车安全 方案详情:发射端采用英飞凌SP370, 接收端采用TDA5235,315M/433M均可。支持太阳能式,记录仪集成式,蓝牙+APP,串口输出+上位机式,也可以按要求订做。 查看方案详情 性能指标: 发射板 315/433.92Mhz ±35khz,FSK,8dbm 接收板 -110dbm/10mA(working) 物料清单 TDA5235,SP370-26-106-0
2026-01-22 21:22:20 5.41MB 汽车电子 压力传感器 电路方案
1
内容概要:文章详细介绍了Bainter陷波滤波器的基本结构和特点,它由多个电阻(R1-R8)和电容(C1, C2)组成,通过不同电阻比例和电容器件的组合可以灵活调整其电气性能,例如实现低通、高通或陷波响应等功能。文中强调该电路有一个显著优势——其陷波的品质因数(Q)仅取决于放大器自身的开环增益而非元件间的相互精度匹配,使得即使在外界环境变化下也能保持稳定的陷波效果,同时给出了一些具体的元件选择公式以及参数计算方法用于指导实际的设计与应用。 适合人群:电子工程技术人员、研究人员以及高校学生特别是那些从事模拟电路、信号处理研究的学习者和技术人员。 使用场景及目标:①为工程师提供有关构建具有高度稳定性的主动式陷波滤波器的知识;②帮助学者理解和掌握这种类型的滤波器背后的工作机制及其数学模型构建。 阅读建议:因为涉及到较多的技术细节与公式推导,在理解过程中需要一定的电子技术和电路基础知识支撑,因此建议在阅读时同步对照相关概念书籍或者资料辅助学习,并亲手尝试按照所提供的参数设置来实验构建类似的电路以便加深印象。
2026-01-22 15:17:30 146KB 模拟电路设计 运算放大器
1
Boost电路原理及开环MATLAB仿真
2026-01-21 20:00:18 29KB matlab
1
### 串口取电电路详解 #### 一、引言 在电子通信领域,特别是针对嵌入式系统或工业控制应用中,串行通信接口是非常常见的数据传输方式之一。其中,RS232与RS485是两种广泛应用的串行通信标准。然而,在实际应用过程中,如何有效地为这些接口供电成为了一个值得关注的问题。本文将详细介绍几种典型的串口取电电路,并对其优缺点进行分析。 #### 二、基础知识简介 - **RS232接口**:是一种标准的串行数据接口,通常用于较短距离的数据传输。其主要特点是使用负逻辑信号表示数据,即+3V~+15V代表逻辑0,-3V~-15V代表逻辑1。 - **RS485接口**:是一种改进型的串行数据接口,主要用于远距离的数据传输。它支持半双工通信模式,具有较强的抗干扰能力。 - **串口取电**:指的是利用串行通信接口中的信号线来获取电力供给。这对于简化设备设计、降低成本等方面具有重要意义。 #### 三、经典电路介绍及分析 ##### 1. 图1与图2电路分析 - **特点**:这两类电路在网络上较为流行,它们均采用RS232接口中的辅助信号线(如RTS和DTR)作为电源输入,以驱动后续的电路。 - **工作原理**:通过将RTS(7号脚)和DTR(4号脚)设置为高电平状态,使得电流能够流经电阻,从而为后续电路提供必要的电压。 - **局限性**:这种方法存在明显的缺陷,即需要将RTS和DTR脚设置为高电平才能正常工作,这限制了设备的灵活性,并可能对某些应用场景造成不便。 ##### 2. 图3电路分析 - **特点**:相较于图1和图2所示的电路,图3的设计更加简洁高效。该电路无需特定的信号脚位电平即可实现取电功能,能够支持三线制操作。 - **工作原理**:通过优化电路结构,使得即使在没有额外设定的情况下也能确保稳定的电源供应。这种设计不仅简化了设备的使用流程,还提高了其兼容性和实用性。 - **优势**:真正的无源转换特性使得该方案在成本控制方面更具竞争力。 ##### 3. 图4电路分析 - **特点**:图4电路同样支持三线制无源转换,但相比图3而言,它的成本更高。 - **工作原理**:该电路通过更复杂的组件配置实现了更高的性能表现,尤其是在稳定性和可靠性方面有所提升。 - **局限性**:高昂的成本限制了其大规模生产的可能性。 #### 四、结论与展望 通过对上述几种串口取电电路的对比分析可以看出,虽然网络上的热门设计方案(如图1和图2所示)能够在一定程度上解决取电问题,但它们仍然存在一定的局限性。相比之下,图3所展示的电路设计更为理想,它不仅能够满足基本的功能需求,还具备较高的性价比优势。而对于追求极致性能的应用场景,则可以选择类似图4的高端解决方案。未来随着技术的进步,我们有望看到更多创新性的设计思路,进一步推动串口取电技术的发展。 #### 五、参考资料 - RS232/RS485接口标准文档 - 相关电子论坛及技术博客 - 实验室测试报告 选择合适的串口取电电路对于优化产品设计、提高系统效率具有重要意义。开发者们应当根据具体的应用需求及成本预算综合考虑,以找到最适合自己项目的解决方案。
2026-01-21 19:18:25 147KB 串口取电电路
1
基于Cadence平台进行1.8V LDO和Bandgap电路设计的专业教程,涵盖CMOS工艺、电路设计方法、仿真验证以及可靠性分析等多个方面。具体包括CMOS工艺器件介绍、gm/Id设计方法及其曲线仿真、Bandgap电路的基本理论与设计、噪声分析及优化、LDO电路结构及仿真分析、滤波器设计实践等内容。此外,还分享了许多实际设计中的经验和技巧,如噪声仿真、瞬态响应优化、版图设计及验证等。 适合人群:从事模拟集成电路设计的工程师和技术人员,尤其是对LDO和Bandgap电路感兴趣的初学者和有一定经验的研发人员。 使用场景及目标:帮助读者掌握LDO和Bandgap电路的设计流程和关键技术,提高电路设计水平,解决实际工程中的常见问题,确保电路性能稳定可靠。 其他说明:文中不仅提供了详细的理论知识,还包括大量实用的操作技巧和案例分析,有助于读者更好地理解和应用所学内容。
2026-01-20 17:08:20 1.06MB
1