核心功能 支持批量处理指定文件夹内所有视频文件,无需逐个操作,大幅提升效率。 运行后可手动输入参数,自由设置 “每几帧提取 1 张图片”(如输入 “5” 即每 5 帧保存 1 张),满足不同精度需求。 基于 BAT 脚本开发,无需安装额外软件,双击即可启动,操作门槛低。 适用场景 视频内容分析(如逐帧观察画面细节、运动轨迹)。 素材提取(从视频中批量获取截图,用于 PPT、海报等)。 学习研究(影视剪辑、计算机视觉相关的基础帧提取需求)。 使用说明 将解压后的文件全部放入需要处理的视频文件夹中。 双击运行脚本,根据提示输入 “每几帧提取 1 张” 的数值(如输入 3 表示每 3 帧取 1 张)。 脚本自动处理所有视频,提取的帧图片会保存在指定路径(可在脚本内提前设置)。
2026-01-09 11:46:29 34.22MB
1
0 引言   短波信道存在多径时延、多普勒频移和扩散、高斯噪声干扰等复杂现象。为了测试短波通信设备的性能,通常需要进行大量的外场实验。相比之下,信道模拟器能够在实验室环境下进行类似的性能测试,而且测试费用少、可重复性强,可以缩短设备的研制周期。所以自行研制信道模拟器十分必要。   信道模拟器可选用比较有代表性的 Watterson 信道模型 ( 即高斯散射增益抽头延迟线模型 ) ,其中一个重要环节就是快速产生高斯噪声序列,便于在添加多普勒扩展和高斯噪声影响时使用。传统的高斯噪声发生器是在微处理器和 DSP 软件系统上实现的,其仿真速度比硬件仿真器慢的多。因此,选取 FPGA 硬件平 在电子设计自动化(EDA)和可编程逻辑器件(PLD)领域,利用FPGA(现场可编程门阵列)产生高斯噪声序列是一种高效的方法,尤其在构建信道模拟器时至关重要。信道模拟器用于模拟真实环境下的通信信道特征,例如短波通信信道,这些信道常常受到多径时延、多普勒频移和高斯噪声的干扰。通过模拟这些现象,可以对通信设备进行性能测试,节省大量外场实验的成本,并增强测试的可重复性。 Watterson信道模型是一种广泛应用的信道模拟模型,它基于高斯散射增益抽头延迟线,其中需要快速生成高斯噪声序列。传统方法是在微处理器或数字信号处理器(DSP)上实现,这种方法在速度上远不及硬件仿真。FPGA硬件平台则提供了更快速、全数字化处理的解决方案,具有更低的测试成本、更高的可重复性和实时性。 本文介绍了一种基于FPGA的高斯噪声序列快速生成技术。该技术利用均匀分布与高斯分布之间的映射关系,采用折线逼近法在FPGA中实现。这种方法简便、快速且硬件资源占用少,使用VHDL语言编写,具备良好的可移植性和灵活性,可以方便地集成到调制解调器中。 生成均匀分布的随机数是关键步骤。m序列发生器是一种常用的伪随机数生成器,由线性反馈移位寄存器(LFSR)产生,其特点是周期长、统计特性接近随机。m序列的周期与LFSR的级数有关,例如,采用18级LFSR,对应的本原多项式为x18+x7+1,可以生成(2^18-1)长度的序列。然而,由于LFSR的工作机制,相邻的序列状态并非完全独立,因此需要降低相关性。 降低相关性可以通过每隔2的幂次个时钟周期输出一次状态值来实现,这样不会影响m序列的周期,同时减少了相邻样点的相关性。这种方法不需要额外的硬件资源,如交织器,从而节省了FPGA的资源。 接着,从均匀分布转化为高斯分布,通常采用Box-Muller变换或者Ziggurat算法。文中提到的是通过均匀分布和高斯分布之间的映射关系进行转换。具体方法未在给出的部分中详细阐述,但通常涉及到将均匀分布的随机数映射到具有特定均值和方差的高斯分布。 通过FPGA实现的高斯噪声生成方案,结合有效的均匀分布到高斯分布转换方法,可以在实验室环境中快速模拟短波通信信道的噪声特性,对通信设备的性能进行精确评估。这样的设计有助于提高研发效率,降低测试成本,并为通信系统的设计和优化提供有力支持。
2026-01-06 16:15:05 292KB EDA/PLD
1
本文介绍了支付宝在打开外部域名时可能会拦截域名导致网页无法打开的问题,并提供了解决方案。通过使用支付宝SDK,开发者可以将自己的域名加入名单以避免拦截。具体步骤包括引入支付宝SDK、设置AppID和商户私钥、配置返回URL和通知URL,最后执行请求并验证名单是否通过。该方法能有效避免域名被拦截,确保网页正常访问。 在互联网应用开发中,域名安全和稳定性是保证用户体验的关键因素之一。尤其对于涉及到在线支付等敏感操作的应用,域名的安全问题更是至关重要。支付宝作为国内领先的第三方支付平台,其域名安全机制也受到了业界的广泛关注。本文将详细介绍支付宝域名加技术的实现方法,以及如何使用支付宝SDK将外部域名添加到名单中,从而避免在支付宝打开外部网页时发生域名被拦截的问题。 支付宝在处理外部链接时,会通过一系列的安全检查来确保链接的安全性,防止恶意链接对用户的资金安全构成威胁。然而,这一机制有时也可能对正常的链接产生误拦截,导致用户无法通过支付宝访问某些外部网站。开发者若希望自己的网站链接在支付宝环境中能够被正常打开,需要按照特定的步骤操作,将该域名加入到支付宝的名单中。 支付宝SDK的使用是实现域名加的关键步骤。开发者需要在其应用中引入支付宝SDK,并正确配置必要的参数。这些参数主要包括应用的AppID以及商户的私钥,这些身份验证信息对于确保交易的安全性和域名加入名单的有效性是必不可少的。 在配置了AppID和私钥之后,开发者还需要设置返回URL和通知URL。这两个URL用于接收支付宝支付完成后返回的数据和异步通知信息。它们的正确配置确保了支付宝系统与开发者的应用能够顺利地进行数据交互,从而完成一系列支付流程。 完成以上步骤后,开发者需要执行请求并验证名单是否通过。这个过程涉及与支付宝服务器的通信,确保其域名已经成功加入名单。在这一环节中,开发者要密切关注支付宝返回的响应信息,以确认域名加操作是否成功,以及是否需要进行进一步的调试和优化。 通过上述步骤,开发者可以有效地将其域名加入支付宝的名单,保证用户在支付宝环境中能够顺利访问其外部网站,从而提供更为流畅和安全的用户体验。这不仅有助于提升业务的可用性和效率,也加强了用户对网站安全性的信心。 作为开发者,应当持续关注支付宝的安全策略更新,并及时调整自身的安全措施,确保域名始终能够保持在名单之中。同时,开发者还应遵循良好的开发实践,确保在开发过程中严格遵守安全编码标准,从根本上提升应用的整体安全性。
2026-01-04 20:49:00 4KB 软件开发 源码
1
惠普NC4400笔记本完美bios,基于F.0C修改,带slic2.1,去名单,直接激活oem win7. 使用方法:解压后,直接运行HPQFlash.exe即可
2025-12-29 23:40:59 982KB bios slic2.1
1
西子、西奥、速捷电梯的优迈系统别墅梯资料,全网最全的智能电梯调试和维修资料,适合新手小,0基础也能轻松上手。包括Smart 100、300主板资料,西奥NCB、H板、A板等,适合电梯调试和维修的朋友。 资料丰富,没有套路,直接上手就能用。不定期的技术分享,保证你学到实用的东西。如果你还是不会,我当场把主板一坨子打穿 电梯作为现代建筑中不可或缺的垂直运输设备,其安全运行对建筑物的正常运作至关重要。优迈系统作为电梯行业中的一个知名品牌,以其高技术含量和智能化特性著称。对于电梯维修和调试人员来说,掌握优迈系统的相关知识与技能是提高工作效率和保障电梯安全运行的关键。 西子电梯作为优迈系统的使用者之一,其产品线广泛,涵盖各类商用和住宅电梯。优迈系统的西子电梯资料能够帮助技术人员了解如何进行日常的维护和故障排除,提高工作效率。而西奥电梯作为另一品牌,同样搭载了优迈系统,其维修和调试资料同样重要。 在维修和调试电梯时,技术人员需要关注多个层面:电梯的核心部件如主板,控制系统,驱动系统等都需要通过专业的资料进行学习和掌握。以Smart 100、300主板为例,这些都是优迈系统中用于控制电梯运行的核心部件,对于这些部件的深入理解和维修技术,是保证电梯安全运行的基石。 电梯的运行程序和故障诊断也是维修调试工作中的重点。优迈系统包含了丰富的程序参数和故障代码,这些都是技术人员在维修过程中需要参考的重要信息。通过准确的故障诊断和参数调整,可以快速定位问题,恢复电梯的正常运行。 此外,电梯的安全标准和法规也是维修调试人员必须掌握的内容。电梯作为一种特殊设备,其安全标准严格,任何维修和调试工作都必须符合相关法规和标准的要求,以确保乘客和使用者的安全。 优迈系统的全套资料提供了全方位的学习资源,从基础的安装调试到高级的故障排除,再到最新的技术分享,都涵盖在内。对于新手小来说,这样的资料能够使他们从零基础开始,逐步建立起系统的知识框架,并且能够跟随不定期更新的技术资料,保持知识的持续更新,避免技术落后。 优迈系统的全套资料不仅是对新手小的友好入门教材,也是资深技术人员提升技能的重要工具。通过这些资料的学习,技术人员能够更高效、更安全地完成电梯的调试和维修工作,确保电梯系统的稳定运行,为用户带来更加安全、便捷的乘梯体验。
2025-12-26 20:15:36 103.05MB 电梯维修 电梯调试
1
在掌纹识别领域中,资源可以分为数据集、模型与算法、开发工具和硬件设备四大类: 1. 数据集资源 公开掌纹数据集: PolyU Palmprint Database:一个广泛使用的掌纹数据库,包含数千幅不同条件下采集的掌纹图像,用于掌纹识别模型的训练和评估。 2. 模型与算法资源 特征提取算法: 纹理分析方法:如Gabor滤波器、Laplacian滤波、Sobel边缘检测等用于提取掌纹的纹理特征。 传统算法:如PCA(主成分分析)、LDA(线性判别分析)等用于掌纹特征提取和降维。 深度学习模型: 卷积神经网络(CNN):用于自动提取掌纹特征和实现分类,适合大规模掌纹识别。 ResNet、Inception等预训练模型:可以将这些通用的图像识别模型微调应用于掌纹识别,获得较高的识别精度。 深度学习框架使用torch,torchvision,
2025-11-17 16:05:28 140.52MB 图像分类 掌纹识别 图像处理 深度学习
1
Matlab仿真研究OFDM与OTFS在衰落信道下的误比特率性能:包括保护间隔、信道均衡与多种编码技术,matlab调制解调 OFDM OTFS 16qam qpsk ldpc turbo在高斯噪声,频率选择性衰落信道下的误比特率性能仿真,matlab代码 OFDM simulink 包括添加保护间隔(cp),信道均衡(ZF MMSE MRC MA LMSEE) 代码每行都有注释,适用于学习,附带仿真说明,完全不用担心看不懂 ,关键词: matlab调制解调; OFDM; OTFS; 16qam; qpsk; ldpc; turbo码; 误比特率性能仿真; 保护间隔(cp); 信道均衡(ZF, MMSE, MRC, MA, LMSEE); simulink; 代码注释; 仿真说明。,"MATLAB仿真:OFDM与OTFS技术在高斯噪声环境下误比特率性能研究"
2025-11-16 10:47:34 9.59MB istio
1
最新冷门赛道控笔电子版虚拟资料,高转化一单39-69,操作简单小可做月入5w+(附带全部教程)【揭秘】 最新冷门赛道控笔电子版虚拟资料,高转化一单39-69,操作简单小可做月入5w+(附带全部教程)【揭秘】 控笔训练电子版可以提升写字的速度,保证写作美观的前提下提升速度,虚拟资料的细分赛道,购买需求挺高的,竞争小,针对的是宝妈,小学妈妈的人群,有很多变现方式,0成本高回报,不需要任何投入,操作简单 课程目录 1.项目介绍 2.操作流程 3.变现方式 4.总结
2025-10-29 03:53:00 109.2MB 课程资源
1
so汇编unidbg逆向笔记-盒aes和md5篇的知识点涵盖了逆向工程与加密算法的深入分析,特别强调了unidbg这一工具的使用和盒加密分析方法。unidbg是一个基于JVM的动态二进制模拟框架,允许开发者在没有原生环境的情况下模拟ARM和MIPS二进制代码的执行,这在逆向工程、安全性研究和模拟特定平台软件运行时尤其有用。 在这一领域,AES(高级加密标准)和MD5(消息摘要算法5)是两种广泛使用且至关重要的加密技术。AES是一种广泛应用于数据加密的对称加密算法,用于保障信息安全;而MD5是一种广泛使用的哈希函数,它可以产生出一个128位的哈希值(通常用32个十六进制数字表示),虽然现在MD5不再被认为是安全的加密方法,但其在文件完整性验证方面依然有着一定的应用。 笔记中提到的aes_keyschedule.exe可能是一个专门用于AES加密的密钥调度程序,它涉及到AES加密算法的密钥生成与管理环节。密钥调度是加密过程中的关键步骤,它决定了如何生成和变换密钥,以保证加密和解密过程的安全性和效率。 在逆向工程实践中,逆向工具的使用是不可或缺的。逆向工程是指通过分析计算机程序的可执行代码来获取其源代码和工作原理的过程。这项技术在软件工程、信息安全和系统分析等领域有着广泛的应用。逆向工具,如unidbg,能够帮助工程师在不直接访问源代码的情况下理解和修改软件,这对于分析恶意软件、软件兼容性测试和安全漏洞检测等领域尤其重要。 此外,逆向工程通常需要逆向工程师具备扎实的编程基础和深入的系统知识,尤其是对汇编语言的理解,因为很多逆向工程工作往往需要深入到操作系统的底层。在处理复杂的加密算法时,工程师可能还需要了解相关的数学原理和算法设计,以及如何处理和分析二进制文件。 总体而言,这篇笔记将为读者提供一份关于如何使用unidbg工具进行逆向工程和加密算法分析的实践指南,尤其着重于AES加密和MD5哈希算法的盒分析。它不仅涉及了具体的技术细节和步骤,还可能包括一些逆向工程实践中遇到的问题解决方案和最佳实践。
2025-10-24 20:18:51 365.63MB 逆向工具 加密算法
1
自学PCB设计的思路可以分为多个步骤,适合没有基础的初学者,也可以为有基础的设计师提供一些实践经验分享。在创建项目之前,需要建立良好的使用工具习惯,这有助于提高工作效率和学习效率。通过整理思路,可以使学习内容更加条理化,便于记忆。 具体到操作层面,第一步是创建项目文件,包括新建工程和元件库。在新建工程时,通常选择“文件→新建→工程”命令。接着,创建元件库是将所有用到的元件及其封装放入库中进行管理,操作路径是“文件→新建→元件库→起名字”。通过这种方法,可以为项目中的每个元件提供一个统一的管理平台。 第二步是新建元件。具体操作包括打开“文件→新建→元件→起名字”,并将新创建的元件保存到之前建立的元件库中。画元件的详细信息时,可以参考相关的教程链接,比如“立创EDA—如何创建画出一个自己的元件_立创eda自己绘制元件-CSDN博客”。在寻找元件时,可以通过立创商城搜索所需的器件,找到型号相符的器件后,下载数据进行查看。然后,需要将找到的封装器件复制到系统库中进行保存。此外,还需要将自己绘制的封装与元件关联起来。 第三步是画原理图,也就是俗称的“抄板”。在此过程中,首先放置元件,并根据提供的原理图进行连线。之后,为端口添加网络标签,连接各个端口。在整理模块时,可以加入折线并分区域设置折线样式。通过添加文字说明,使原理图更加清晰易懂。完成这些步骤后,需要对每个模块进行仔细检查,包括连线的准确性、引脚连接、以及电容和电阻等元件的规格大小设置。还需要通过“检查DRC”功能检查所有封装的完整性。 在画PCB细节方面,需要注意与距离相关的规范,例如在嘉立创EDA基础中提到的“1到对象2距离为7.8mil,应该>= 10mil报错怎么消除-CSDN博客”。这意味着在设计过程中,必须注意元件间的最小距离要求,以免造成设计错误。 在硬件电路思维方面,可以考虑如何使用电阻进行分压(降压)电路设计,以及如何通过加入限幅电路(二极管)来保护电路。这些基本的电路设计思路,是PCB设计中不可或缺的一部分。 自学PCB设计需要从基础知识开始,逐步深入学习到实际操作。通过理论与实践相结合,不断探索和实践,才能逐步成长为一名合格的PCB设计师。需要注意的是,文中可能会存在个别文字识别错误或漏识别的情况,需要读者在理解的基础上进行适当的调整。
2025-10-23 10:41:26 2.05MB PCB设计
1