在当前的深度学习与人工智能领域,目标检测技术的应用越来越广泛。特别是在无人驾驶、安防监控、无人机航拍等场景中,目标检测能够识别出图像中的特定对象,如车辆、行人等,并对其位置进行准确标记,这对于智能系统的决策支持至关重要。 “目标检测数据集-无人机视角下人、车数据(已标注)”是一个专门针对无人机视角下人和车辆的目标检测研究而构建的数据集。该数据集包含了大量的无人机拍摄的航拍图像,这些图像通过人工标注的方式,对其中出现的人和车辆进行了精确的位置标注,标注信息包括了目标的类别和位置坐标等。 数据集中的“8000+p已标注无人机采集人车数据”意味着该数据集至少包含了8000张以上的图像,其中每张图像都标注了至少一个人或一辆车的目标信息。这一数量级的标注数据对于训练深度学习模型而言是非常宝贵的资源,有助于提高模型在实际应用中的准确性和鲁棒性。 该数据集还包含了一个关键的文件——data.yaml,这通常是一个用于描述数据集的元数据文件,可能包含了数据集的格式说明、类别信息、图像的尺寸、标注格式等关键信息。这些信息对于理解数据集的结构和内容至关重要,能够帮助数据科学家和研究人员快速地对数据集进行探索和应用。 “labels”文件夹通常包含了所有的标注文件,这些文件详细记录了图像中每个目标的位置和类别。在目标检测任务中,这些标注信息是训练模型时不可或缺的,因为模型需要通过这些信息来学习如何从原始图像中识别和定位目标。 “images”文件夹则存储了实际的航拍图像数据,这些图像都是无人机从特定的视角所采集,它们提供了丰富而真实的目标检测场景。由于无人机具有机动性和灵活性,它可以从多角度、多高度采集数据,这为构建复杂场景下的目标检测模型提供了多样化的数据支持。 此外,由于该数据集被标签化为“深度学习 数据集 目标检测 人工智能”,说明它不仅适用于传统的图像处理和计算机视觉算法,更主要的是为深度学习模型提供训练和验证数据。深度学习模型,尤其是卷积神经网络(CNN),在目标检测任务中表现出了卓越的性能,能够自动从大量的标注数据中学习到复杂的特征表达,从而在各种复杂场景中实现高准确率的目标检测。 “目标检测数据集-无人机视角下人、车数据(已标注)”是无人机视觉领域研究的一个宝贵资源,它不仅能够促进深度学习模型在目标检测任务中的应用与开发,而且还能够为人工智能技术的发展与创新提供实验数据支撑。通过这类数据集,研究人员可以深入探索无人机视觉在多领域内的应用潜力,比如城市交通监控、智慧城市建设、应急管理等,这些应用将对社会生活产生积极的影响。
2025-09-12 15:23:22 397.26MB 深度学习 数据集 目标检测 人工智能
1
数据集说明:yolo格式,一共196张,后续还会继续增加 train:images,lables格式 1、提供对人员上身短袖的标注 2、提供了对于胳膊的标注 3、可以通过人体,短袖,胳膊共同判断人是否穿着短袖 适合场景 1、工地、工厂判断不可以穿短袖的场景 YOLO目标检测数据集是专门为用于检测人体上身穿着短袖工作服及人体胳膊的图像数据集。该数据集采用YOLO格式,它包含196张图像及对应的标注信息,用于训练机器学习模型。数据集被划分为训练集,其中包含images和labels两个部分。具体而言,这一数据集的特点是对人体上身的短袖衣物进行标注,同时对人的胳膊也进行了标注。这种标注方式使得数据集可以用来训练模型区分人是否穿着短袖工作服,这对于特定场合如工地或工厂等需要符合工作服着装规定的场景尤为重要。 此类数据集可以应用于多种视觉识别任务,尤其是目标检测。YOLO算法以其实时性和准确性受到许多研究人员的青睐,它能够在图像中定位并分类多个对象。数据集中的图像与标注信息,可以帮助训练出一个能够识别短袖工作服和人体胳膊的模型,从而达到判断人是否穿着短袖的目的。 YOLO目标检测数据集还可以通过特定场景来使用,例如,在工地或工厂中,为了避免安全事故的发生,可能需要强制要求工人穿着符合规定的服装。例如,一些工作岗位可能禁止穿着短袖工作服,以防止工人的胳膊暴露在潜在的危险环境中。通过使用这样的数据集,可以开发出能够自动识别并提醒违规着装情况的智能监控系统。 此外,此类数据集不仅仅适用于工作服短袖和胳膊的识别,还可以通过扩展标注来实现更多的功能。例如,可以将数据集用于其他类型的服装识别,甚至扩展到整个人体姿态识别和行为分析。对于穿戴检测技术来说,这样的数据集是一个宝贵的资源,对于研发穿戴检测和人员安全管理系统具有重要意义。 值得注意的是,这一数据集还在持续扩充中,未来的版本将会加入更多的训练图像,这对于提高模型识别准确度和泛化能力是非常有益的。随着数据量的增加,模型将能更准确地识别各种复杂场景下的短袖工作服和胳膊,进一步提升其在实际工作环境中的应用价值。 YOLO目标检测数据集针对特定的应用场景提供了丰富的标注信息,能够帮助开发者训练出针对短袖工作服和人体胳膊的高效检测模型。这对于提高工作场所的安全性、自动化监管具有重要的现实意义。同时,随着数据集的不断更新和扩充,这一工具将在目标检测领域展现出更大的应用潜力。
2025-09-08 08:36:30 185.32MB 数据集 yolov 目标检测
1
腐蚀检测实例分割数据集 • 数据集名称:腐蚀检测实例分割数据集 • 图片数量: 训练集:302张航拍图像 验证集:87张航拍图像 测试集:45张航拍图像 总计:434张航拍场景图像 • 训练集:302张航拍图像 • 验证集:87张航拍图像 • 测试集:45张航拍图像 • 总计:434张航拍场景图像 • 分类类别: 腐蚀(Corrosion):材料表面因化学或电化学反应导致的损伤区域 • 腐蚀(Corrosion):材料表面因化学或电化学反应导致的损伤区域 • 标注格式: YOLO格式多边形标注,精确勾勒腐蚀区域轮廓 包含归一化顶点坐标序列,适用于实例分割任务 • YOLO格式多边形标注,精确勾勒腐蚀区域轮廓 • 包含归一化顶点坐标序列,适用于实例分割任务 • 数据来源:真实航拍场景图像,覆盖多样化环境条件 1. 基础设施健康监测系统: 自动检测桥梁、管道、储罐等工业设施的腐蚀区域 量化评估腐蚀面积与分布,辅助制定维护策略 1. 自动检测桥梁、管道、储罐等工业设施的腐蚀区域 1. 量化评估腐蚀面积与分布,辅助制定维护策略 1. 航拍巡检分析平台: 集成无人机巡检系统,实现腐蚀区域自动标记与报警 减少人工检测风险,提升大规模设施检测效率 1. 集成无人机巡检系统,实现腐蚀区域自动标记与报警 1. 减少人工检测风险,提升大规模设施检测效率 1. 材料耐久性研究: 为材料科学提供视觉检测基准数据 支持腐蚀演化趋势分析与防护措施效果评估 1. 为材料科学提供视觉检测基准数据 1. 支持腐蚀演化趋势分析与防护措施效果评估 1. 工业AI视觉系统开发: 训练高精度实例分割模型,识别复杂背景下的腐蚀特征 兼容YOLO生态,快速部署至边缘计算设备 1. 训练高精度实例分割模型,识别复杂背景下的腐蚀特征 1. 兼容YOLO生态,快速部署至边缘计算设备 1. 精准实例标注: 每个腐蚀区域采用多边形顶点精确标注,保留不规则形态特征 严格区分相邻腐蚀区域,支持实例级分析 1. 每个腐蚀区域采用多边形顶点精确标注,保留不规则形态特征 1. 严格区分相邻腐蚀区域,支持实例级分析 1. 真实场景覆盖: 包含不同光照、角度、背景复杂度的航拍场景 覆盖金属结构、建筑表面等多类型腐蚀载体 1. 包含不同光照、角度、背景复杂度的航拍场景 1. 覆盖金属结构、建筑表面等多类型腐蚀载体 1. 工业应用导向: 专注腐蚀检测细分场景,解决实际工业痛点 标注格式直接兼容主流工业检测系统 1. 专注腐蚀检测细分场景,解决实际工业痛点 1. 标注格式直接兼容主流工业检测系统 1. 模型训练友好: 提供标准化训练/验证/测试集划分 支持实例分割模型端到端训练与性能验证 1. 提供标准化训练/验证/测试集划分 1. 支持实例分割模型端到端训练与性能验证 1. 领域稀缺性: 稀缺的航拍腐蚀检测专项数据集 填补工业视觉在腐蚀量化分析领域的数据空白 1. 稀缺的航拍腐蚀检测专项数据集 1. 填补工业视觉在腐蚀量化分析领域的数据空白
2025-08-27 15:57:39 157.4MB 目标检测数据集 yolo
1
遥感技术在航空领域的应用日益广泛,其中机场跑道作为航空安全的重要组成部分,其状态监测显得尤为重要。为提高遥感监测的自动化和智能化水平,数据集的作用不可或缺。《遥感机场跑道检测数据集VOC+YOLO格式8116张2类别》文档提供了一个专为遥感影像中机场跑道检测设计的数据集。该数据集具有以下几个关键知识点: 该数据集采用Pascal VOC和YOLO两种标注格式。Pascal VOC格式是一种广泛使用的数据格式,它提供了XML格式的标注文件,用于描述图像中各类物体的位置和类别信息。而YOLO格式则是一种流行的实时对象检测系统,它通过txt文件来标注物体的类别和位置,以方便YOLO训练算法的使用。这两种格式的结合使得数据集能够适用于多种对象检测模型的训练和测试。 数据集包含了8116张标注好的遥感图片,每张图片都对应一个VOC格式的xml标注文件和一个YOLO格式的txt标注文件。这意味着,除了图片本身,还有8116个详细的标注文件,为算法的精确训练提供了可能。图片及标注文件的数量之多,保证了数据集在深度学习模型训练中的丰富性和多样性。 标注类别共有两个,分别是“airport”(机场)和“runway”(跑道)。机场类别标注了17251个矩形框,跑道类别标注了27810个矩形框,总计45061个矩形框。这表明数据集在机场和跑道对象的覆盖面上下了大功夫,确保了足够的标注密度和详尽程度。 标注工具使用的是labelImg,这是个广泛用于图像标注的开源工具,它支持生成Pascal VOC格式的标注文件。标注规则是使用矩形框来圈定机场和跑道,这与遥感图像中机场跑道目标的识别特征相匹配。 数据集的使用说明中还强调了重要说明和特别声明。重要说明暂无,而特别声明则指出数据集本身不对训练出来的模型精度提供任何保证。这表明数据集提供的是一个基准材料,模型精度的高低需要使用者根据具体算法和训练过程来保证。同时,数据集提供了准确且合理的标注,以确保训练图像质量。 数据集提供了图片预览和标注例子,以便用户更直观地了解数据集的内容和标注的质量。数据集的下载链接也一并给出,方便用户获取完整数据进行学习和研究。 该数据集对于研究人员来说具有较高的实用价值,能够为机场跑道的遥感监测与分析提供坚实的数据支持。通过对这些标注数据的深度学习和分析,研究人员可以开发出更为精确高效的机场跑道监测算法,从而提高航空安全的保障水平。
1
军事目标检测数据集是计算机视觉领域内一个特殊的研究方向,它主要致力于从各种图像和视频资料中识别和定位军事目标。这类数据集通常包含了不同种类的军事装备、人员和设施等,用于训练和评估目标检测算法的性能。在军事应用中,目标检测的重要性不言而喻,它可以用于无人侦察、自动导航、威胁评估等多个方面。 在军事目标检测数据集中,通常会包含大量的标记数据,这些数据对于训练深度学习模型至关重要。由于军事装备的特征和外观复杂多变,因此数据集中的图像往往需要覆盖多种场景、光照和天气条件,以确保模型的鲁棒性和适应性。例如,数据集中可能会有坦克、飞机、舰船、导弹发射器等不同装备的图片,同时也会有伪装、隐蔽在树林或建筑物后的目标图片,以提高模型在复杂环境下的识别能力。 由于军事领域的特殊性和敏感性,这类数据集往往不容易获取。它们可能由政府或军方研究机构创建,也可能由相关的学术机构或商业公司进行采集和整理。数据集的构建不仅需要大量的技术投入,还需要严格的安全措施和合法合规的使用框架。在公开发布时,可能需要对图像内容进行脱敏处理,以保护军事机密和人员安全。 数据集的使用目的非常广泛,除了直接的军事应用外,还有助于促进计算机视觉领域的基础研究和技术创新。例如,在自动驾驶汽车、机器人视觉、视频监控等领域,目标检测技术同样有广泛应用,因此从军事目标检测数据集中提取出的算法和技术可以迁移到这些民用领域。 除了图像数据之外,军事目标检测数据集还可能包括相应的标注信息,如边界框(bounding box)坐标、目标类别标签、场景描述等。这些标注信息对于算法的学习和评估至关重要,能够帮助模型准确理解目标在图像中的位置和特征。标注工作通常由专业的标注团队完成,需要具备专业的知识和经验,以确保标注的准确性和一致性。 军事目标检测数据集的发布和使用往往伴随着一系列的法律和伦理问题。对于研究者和开发者来说,正确使用数据集并遵守相关法律法规是基本的职业道德。此外,随着技术的发展和应用领域的扩大,如何在保护隐私和促进技术发展之间找到平衡点,也是一个需要不断思考和解决的问题。
2025-08-25 23:38:04 391.64MB 数据集
1
一、基础信息 数据集名称:汽车零部件目标检测数据集 图片数量:包含大量标注图片(具体数量见原始数据集说明) 分类类别:覆盖70+汽车核心零部件类别,包括: - 发电机系统(转子、调节器、二极管等) - 传感器类(ABS传感器、氧传感器、曲轴位置传感器等) - 照明组件(卤素灯、LED灯、密封灯组等) - 传动部件(张紧轮、惰轮、正时皮带等) - 燃油系统(喷油器、油泵滤网、压力调节器等) - 电气元件(继电器、保险丝、点火线圈等) (完整类别详见数据集分类列表) 标注格式:YOLO格式,包含精确的边界框标注 数据特性:高质量汽车零部件特写图片,聚焦工业级应用场景 二、适用场景 1. 汽车维修AI辅助系统 开发智能诊断工具,通过图像识别快速定位故障零部件,提升维修效率 1. 智能制造与质量检测 用于自动化产线中的零部件缺陷检测、装配完整性验证及分类管理 1. 汽车零配件供应链管理 构建智能仓储系统,实现零部件自动识别、库存盘点与物流分拣 1. 自动驾驶系统开发 增强车辆自检能力,实时监控关键部件状态(如刹车盘、传感器等) 1. 汽车教育AR应用 开发交互式教学工具,辅助学员识别复杂汽车零部件结构与功能 三、数据集优势 工业级专业覆盖 - 涵盖发动机系统、电气装置、传动机构等全车核心部件 - 包含罕见专业组件(如VVT电磁阀、柴油步进线圈等) - 多角度展现零部件在实车环境中的安装状态 精准任务适配性 - YOLO标注格式优化目标检测任务,支持主流检测框架直接训练 - 类别设计符合汽车工程实际需求(如区分发电机转子和定子) - 支持零部件精细识别与定位,满足工业级精度要求 工程应用价值突出 - 直接解决汽车后市场服务中的零部件识别痛点 - 标注方案契合智能制造场景的自动化检测需求 - 可扩展应用于车辆生命周期管理、保险定损等衍生领域
2025-08-25 10:55:50 22.4MB yolo
1
铁轨表面缺损检测数据集是一个针对特定目标检测任务而设计的数据集,包含了4789张标注图片,采用Pascal VOC和YOLO两种通用格式。VOC格式包括jpg格式的图片文件和相应的xml标注文件,而YOLO格式则包括图片文件和txt标注文件。数据集中的图片数量、标注数量与标注类别数均为4789,标注类别分为两类,分别是“Spalling”(脱裂)和“Trilho_bom”(良好)。 “Spalling”类别拥有3198个标注框,而“Trilho_bom”类别拥有3114个标注框,总共6312个标注框。对于标注工具,本数据集采用的是广泛使用的labelImg工具,便于研究人员进行目标检测模型的训练与评估。标注规则是通过在目标物周围绘制矩形框来实现。尽管数据集提供了详尽的标注信息,但制作者特别声明,不对利用该数据集训练出的模型或权重文件的精度提供任何保证。 数据集的准确性和合理性对于机器学习模型的性能至关重要。本数据集的目标检测任务是识别并标注铁轨表面的缺损情况,例如脱裂。这对于铁路维护和安全管理具有实际意义,可以作为自动检测系统的基础数据。通过细致的标注,训练出的模型可以准确识别铁轨表面的缺陷,进而帮助工程师及时进行维护工作,预防可能发生的事故。 此外,该数据集可以被广泛应用于计算机视觉和深度学习领域中的目标检测研究。对于初学者和研究人员而言,这是一个很好的资源,不仅提供了丰富的标注图片,还提供了YOLO格式的标注,该格式在实时目标检测应用中非常流行。数据集还提供了一个标注示例的下载链接,有助于理解数据集的具体结构和内容。 该数据集也具有商业应用潜力,例如铁路检测公司可以使用这个数据集来训练自己的模型,以自动识别铁轨缺陷,提高检测效率和准确性。此外,教育机构和研究者可以通过这个数据集教授和研究目标检测技术,提升学术研究与实践能力。 该铁轨表面缺损检测数据集为相关领域的研究提供了有力的数据支撑,有助于推动技术进步和安全保障。同时,数据集的开放性和易用性也将促进更多创新研究和应用的产生。
2025-08-15 11:35:36 2.29MB 数据集
1
TinyPerson数据集包含1532个样本,所有图片均已标注为VOC xml和YOLO txt两种格式。对于YOLO txt格式的数据,按照训练集、验证集以及测试集进行了划分,配备了相应的data.yaml配置文件,可以直接用于基于YOLO算法的小目标检测任务训练中。 TinyPerson数据集是一项专为小目标检测任务设计的图像数据集,包含了1532个精心挑选的样本,这些样本图片主要关注的是人这一类小型目标。该数据集的一个显著特点是它为图片提供了双格式标注,即VOC xml和YOLO txt两种格式,极大地提升了数据集的可用性和灵活性。VOC xml格式广泛应用于图像识别领域,而YOLO txt格式则是为YOLO(You Only Look Once)算法量身定制的标注格式,非常适合于实时目标检测任务。 在数据集的构成上,TinyPerson数据集考虑到了深度学习模型训练过程中的训练、验证和测试需求。数据集中的样本被合理地划分为训练集、验证集和测试集,这种划分有助于模型开发人员更好地进行模型的训练和评估工作。此外,每一种划分都配备了相应的data.yaml配置文件,这一文件是YOLO系列算法中用于数据加载和配置的重要组件。它包含了图片的路径、标注信息以及其他必要的配置,使得研究人员能够快速启动模型训练过程,无需从头开始配置数据加载部分。 由于YOLO算法在处理小目标检测时具有速度快、准确性高等特点,TinyPerson数据集的出现,使得研究人员能够在这个基础上训练出性能更优的模型,从而在安防监控、无人车辆、机器人视觉等领域有所应用。小目标检测是计算机视觉领域中的一个难点,因为小型目标在图像中占据的像素较少,背景信息复杂,容易被忽略或者识别错误。TinyPerson数据集通过提供丰富的标注数据,有效地解决了这一问题,为研究者们提供了一个宝贵的资源。 数据集的收集工作通常需要大量的时间和精力,尤其是高质量的标注工作,需要专业的标注人员进行。而TinyPerson数据集的标注工作达到了一种高度精细和准确的程度,能够确保研究人员在训练模型时,能够接收到准确的目标位置和类别信息。对于那些需要对小型人物目标进行精确检测的应用场景,如人群计数、行为分析等,TinyPerson数据集无疑提供了一个非常好的起点。 总体来说,TinyPerson数据集是为那些致力于小目标检测任务的研究人员准备的宝贵资源。它不仅提供了丰富的、格式化的标注数据,还通过合理的数据划分和便捷的配置文件,极大地简化了模型训练和评估的前期准备过程。随着计算机视觉技术的不断进步,TinyPerson数据集有望成为相关领域研究的基石之一。
2025-08-14 21:51:52 78.69MB 小目标检测 数据集
1
一、基础信息 • 数据集名称:电子产品与办公用品目标检测数据集 • 图片数量: 训练集:35张图片 验证集:10张图片 测试集:5张图片 总计:50张图片 • 分类类别: 充电器(cargador)、笔记本充电器(cargadorlaptop)、手机(celular)、笔记本(cuaderno)、笔(lapicero)、钥匙(llave)、游戏手柄(mandoplay)、硬币(moneda)、鼠标(mouse)、键盘(teclado) • 标注格式:YOLO格式,包含边界框和类别标签,适用于目标检测任务。 • 数据格式:JPEG图片,来源于实际场景。 二、适用场景 • 办公自动化系统开发:用于检测办公桌物品如鼠标、键盘和笔记本,帮助构建自动化库存管理或设备监控系统。 • 零售和消费电子应用:识别电子产品如手机、游戏手柄和充电器,用于智能零售货架管理或商品识别解决方案。 • 智能家居设备集成:检测日常物品如钥匙、硬币和笔,实现家居环境中的物体定位和智能提醒功能。 • 教育和原型测试:适合快速构建目标检测模型,用于教学演示或轻量级AI应用开发。 三、数据集优势 • 多样化的类别:覆盖10个常见办公和生活用品类别,包括电子设备和日常物品,提供丰富的目标检测对象。 • 简洁易用:数据量轻量,适合快速实验和原型开发;YOLO格式兼容主流深度学习框架,可直接用于模型训练。 • 实际场景适配:数据来源于真实环境,适用于自动化、库存管理等实际任务,提升模型泛化能力。
2025-08-04 16:59:20 70.16MB yolo
1
从多个茶园采集了不同品种、不同阶段的茶青图像,涵盖了各种拍摄角度、光照条件和背景环境,以确保数据集的多样性。使用高分辨率智能手机进行拍摄,共采集1015张茶青图像,2万个实例,由于资源必须小于1GB,分为茶叶数据集1和2分别上传。使用labelImg标注工具将这些图像标注为无芽“noBud”、单芽“oneBud”、一芽一叶“oneBudOneLeaf”、一芽二叶“oneBudTwoLeaves”、一芽三叶“oneBudThreeLeaves”、碎叶“tatterLeaf”、蒂头“stem”、其他杂物“others”,共8个类别。
2025-07-22 18:13:22 364.35MB XML格式 目标检测
1