在当前的计算机视觉和机器学习领域,目标检测是一项基础且关键的技术。尤其在城市管理、公共安全和基础设施维护等方面,目标检测的应用极为广泛。本文将详细介绍一个与之相关的数据集,名为“井盖丢失未盖破损检测数据集”,该数据集使用Pascal VOC格式和YOLO格式,并包含了2890张图像及其标注文件。 该数据集专门针对城市基础设施中的井盖状态进行监测,尤其是对井盖丢失、未盖、破损等情况的检测,具有重要的现实意义。它由2890张高清晰度的jpg图片组成,每张图片都配合了详细的标注信息。这些标注信息分为两种格式:一种是Pascal VOC格式,另一种是YOLO格式,其中包括了对应的xml文件和txt文件,但不包含图像分割路径的txt文件。 数据集的标注类别共有五个,分别是“broke”(破损)、“circle”(圆形)、“good”(完好)、“lose”(丢失)以及“uncovered”(未盖)。在2890张图片中,这些类别的标注数量不一,总计标注框数达到3361个。其中,“good”类别的框数最多,达到1158个,而“circle”类别的框数最少,为207个。每个类别的具体标注数量,以及各框数都已在数据集中明确标记,方便研究人员使用。 数据集的标注工作采用了广泛使用的标注工具“labelImg”,它是一个开源的图像标注工具,可以为图像对象绘制矩形框,并将这些信息保存为xml格式文件。YOLO格式的标注信息则是以txt文件的形式存在,每个txt文件对应一张图片,并记录了该图片中所有目标的类别和位置信息。 值得注意的是,标注过程中遵循了一定的规则,即对不同的类别进行不同形状的矩形框标记。这种细致的分类有助于提高机器学习模型对各类井盖状态的识别精度。 虽然该数据集提供了大量且详细的标注图像,但数据集的制作者特别指出,不对由这些数据训练出的模型或者权重文件的精度进行任何保证。这说明了数据集的应用过程中,研究者可能还需要根据实际情况对数据集进行进一步的优化和调整。 数据集中还提供了一些图片的预览和标注例子,为研究者理解数据集的标注细节和实际应用提供了便利。 这个井盖丢失未盖破损检测数据集在目标检测领域具有重要的研究和应用价值,尤其是在城市基础设施的安全监测方面。通过这个数据集,研究者们可以训练出更加精准的检测模型,以识别和防范由井盖问题引发的安全事故。
2025-08-19 15:03:57 4.24MB 数据集
1
YOLOv5是一种高效且准确的目标检测模型,尤其在实时应用中表现出色。该模型是YOLO(You Only Look Once)系列的最新版本,由Joseph Redmon等人在2016年首次提出,随后经过多次优化升级。YOLOv5在前几代的基础上提升了速度和精度,使得它成为计算机视觉领域广泛使用的工具。 道路破损识别是利用AI技术来自动检测道路上的裂缝、坑洼等损坏情况。这对于城市基础设施维护和道路安全具有重要意义,可以减少人力成本,提高工作效率。在这个项目中,YOLOv5被应用于这个特定的任务,通过训练模型学习道路破损的特征,然后在新的图像上进行预测,标记出可能存在的破损区域。 为了实现道路破损识别,首先你需要搭建一个YOLOv5的运行环境。这通常包括安装Python、PyTorch框架以及相关的依赖库,如CUDA(如果要在GPU上运行)和imageio等。确保你的系统满足YOLOv5的硬件和软件要求,例如足够的GPU内存和兼容的CUDA版本。 接着,项目提供了一些预训练的权重文件,这些文件包含了模型在道路破损数据集上学习到的特征。你可以直接使用这些权重进行预测,无需再次训练。只需加载模型,并将待检测的图像输入模型,模型就会输出包含破损位置的边界框。 如果你想要对数据集进行自定义标注或训练,你需要获取并处理道路数据集。据描述,这个数据集大约12GB,可能包含了大量的图像和对应的标注信息。使用labelImg等工具可以方便地进行图像标注,将道路破损的位置以XML文件的形式记录下来。之后,这些标注文件将用于训练YOLOv5模型。 训练过程涉及数据预处理、划分训练集和验证集、配置YOLOv5的训练参数(如学习率、批大小、训练轮数等),并使用PyTorch的`train.py`脚本来启动训练。训练过程中,模型会逐步学习并优化其权重,以更好地识别道路破损。 训练完成后,你可以使用`test.py`脚本对模型进行评估,或者用`inference.py`进行实时检测。通过调整超参数和网络结构,可以进一步优化模型性能,达到更高的识别精度和更快的检测速度。 YOLOv5道路破损识别项目是一个结合了深度学习、计算机视觉和实际应用的案例。通过理解YOLOv5的工作原理,掌握数据处理和模型训练的流程,我们可以利用AI技术解决实际世界的问题,为城市管理和公共安全贡献力量。
2025-07-23 22:22:39 844.51MB 数据集 YOLO 人工智能
1
内含8000多张图像,利用labelimg对其进行了标注,各类标签数目:789个(表计读数有错);523个 (表计外壳破损);883个   (异物_鸟巢);383个 (操纵箱箱门闭合异常) ;362个 (开关柜已闭合;654个  (盖板破损) ;729个 (异物_挂空悬浮物);1174个(呼吸器_硅胶变色);869个 (表计表盘模糊);410个  (绝缘子破裂);723个 (表计表盘破损);833个(渗漏油_地面油污);567个   (未穿戴安全帽);815个    (未穿工装);106个(呼吸器_硅胶体破损);607个(吸烟) 上传大小有限,此为网盘下载链接
2024-11-14 11:59:46 4KB
1
宁晋石盐是河北省目前发现的最大盐田。该区先期施工的盐1井由于地层蠕变,造成技术套管变形、错位,导致该井无法完成水溶对接及生产使用。在处理时,首先对该井Ф177.8 mm套管在2 681 m处使用Ф152 mm开窗器开窗、造斜,然后顺利的下入了Ф139.7 mm生产用中心管,固井后建立溶腔。通过对盐1井套管破损处理分析认为,对该地层压力考虑不足是套管破损的主要原因。
2024-01-12 08:08:52 1.23MB 套管破损 事故处理
1
YOLOv5纸箱缺陷破损检测模型,附有各种训练曲线图,可使用tensorboard打开训练日志,用于检测纸箱有缺陷和破损的地方
2023-01-04 17:28:55 42.76MB YOLOv5纸箱缺陷破损检测模型
医用手套破损检测数据集,5000张以上医用防护手套图片,采集与2000多位使用者,高清及以上(1920x1080及以上) 医用手套破损检测数据集,5000张以上医用防护手套图片,采集与2000多位使用者,高清及以上(1920x1080及以上) 医用手套破损检测数据集,5000张以上医用防护手套图片,采集与2000多位使用者,高清及以上(1920x1080及以上)
2022-12-23 15:28:12 406.05MB 医用手套 破损 检测 数据集
绝缘子闪络破损缺陷数据集 1600张 有标签 深度学习 绝缘子缺陷检测 目标检测 图像识别任务 有需要可以私信我~
2022-11-08 20:23:18 765KB 深度学习 目标检测 缺陷检测 绝缘子
1
Twitch能模拟出很多信号干扰的特殊视觉效果,例如 画面抖动,旧电影,画面破损,随机位置大小变化,画面亮度色彩随机变化,能快速的制作画面混乱的效果,也有人称Twitch为混乱插件。 六种画面特效效果:模糊/颜色/灯光/比例/滑动/时间
2022-08-22 14:05:43 28.22MB AE插件 Twitch
1
用于深度目标识别训练,接触网及输电线上接触网的训练
2022-08-05 20:05:44 78B 训练集 标注 深度学习
1
1、YOLO包装盒纸板破损检测数据集,1000多张使用lableimg标注软件,标注好的真实场景的高质量图片数据,图片格式为jpg,标签有两种,分别为VOC格式和yolo格式,分别保存在两个文件夹中,可以直接用于YOL包装盒纸板破损识别,数据场景丰富,类别名为break_board 2、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743