内容概要:文章展示了一个用于故障检测的深度学习项目,采用PyTorch构建了一个一维卷积神经网络(CNN),针对工业故障诊断问题。文中详细地解释了从数据加载、预处理、模型搭建、训练到性能评估的全过程。通过归一化原始数据集,设计多层一维卷积与全局最大池化的网络架构,并应用交叉熵作为损失函数,利用Adam算法进行梯度下降最优化,最终实现了高精度的分类任务。 适用人群:对于机器学习尤其是深度学习领域感兴趣的科研人员或者工程师,特别是那些想要深入了解或实操如何使用深度学习技术解决实际问题如工业设备状态监测的研究者和技术开发者。 使用场景及目标:本项目的目的是为了提高机械设备运行状态监控系统的效率与准确性,可以应用于制造业、电力等行业,帮助实时监控设备健康状况,及时发现潜在故障点,从而减少非计划停机时间和维修成本。 其他说明:除了提供了一套完整的解决方案之外,本文还展示了如何计算模型的参数量,以便于控制模型复杂度。此外,文中也包含了模型训练过程中每轮迭代的耗时记录,这对于大规模数据集下优化算法选择具有重要参考价值。
2025-08-25 17:45:48 3KB 神经网络 故障检测 代码复现
1
在电力系统中,变压器是至关重要的设备,负责电压转换与电能传输。然而,变压器可能会因为各种原因出现故障,这需要我们及时进行诊断和处理。本项目提供的代码着重于利用bp神经网络对变压器气体故障进行分类,这是一种基于机器学习的方法,能够通过分析变压器油中气体的成分和浓度来判断故障类型。 bp神经网络(Backpropagation Neural Network)是一种常见的多层前馈神经网络,它通过反向传播算法来调整权重和偏置,以最小化预测结果与实际值之间的误差。在这个项目中,bp神经网络被用作故障识别模型,通过学习已知的故障案例数据,建立一个能够预测不同故障类别的模型。 `main.m`和`main1.m`很可能是代码的主程序文件。`main.m`通常包含整个项目的入口点,负责设置参数、加载数据、构建网络结构、训练模型和进行测试。`main1.m`可能包含对`main.m`的补充或改进,例如不同的网络架构、优化算法或者训练策略。 `maydata.mat`文件可能是存储了预处理后的数据集,包含了变压器故障的特征数据和相应的标签。这些特征可能包括变压器气体的种类(如氢气、乙炔、一氧化碳等)、气体的浓度以及其他可能影响故障类型的指标。MATLAB的`.mat`文件可以方便地存储和加载矩阵数据,非常适合用于机器学习项目。 `数据.xlsx`文件则可能是原始数据源,以Excel表格的形式记录了详细的故障案例信息。每一行代表一个样本,列可能包含气体浓度、故障类型等信息。在项目开始时,这些数据会被读入并转化为适合神经网络训练的格式。 在实施这个项目时,首先要进行数据预处理,包括数据清洗、缺失值处理、异常值检测以及特征工程。接着,将预处理好的数据分为训练集和测试集,训练集用于训练神经网络,而测试集用于评估模型的泛化能力。 神经网络的构建通常包括定义输入层、隐藏层和输出层,选择合适的激活函数(如Sigmoid、ReLU等),并设定学习率、迭代次数等超参数。在bp神经网络中,权重和偏置会通过反向传播算法逐步更新,直到网络的输出误差达到可接受的范围。 训练完成后,模型会根据新的气体数据进行故障分类。为了提高模型的稳定性和预测精度,还可以采用集成学习方法,如bagging、boosting或stacking,结合多个bp神经网络的预测结果。 这个项目通过bp神经网络对变压器气体故障进行分类,旨在提供一种有效的故障诊断工具,帮助电力系统维护人员及时发现并处理潜在的问题,保障电力系统的安全稳定运行。
2025-06-10 10:46:52 15KB 神经网络 故障分类 变压器故障
1
Maltab实现CNN卷积神经网络故障诊断(代码完整,可直接运行,适合2018及以上) 卷积神经网络(convolutional neural network)是具有局部连接、权重共享等特性的深层前馈神经网络,最早主要是用来处理图像信息。 相比于全连接前馈神经网络,卷积神经网络有三个结构上的特性:局部连接、权重共享以及汇聚,这些特性使得卷积神经网络具有很好的特征提取能力,且参数更少。 利用各种检查和测试方法,发现系统和设备是否存在故障的过程是故障检测;而进一步确定故障所在大致部位的过程是故障定位。故障检测和故障定位同属网络生存性范畴。要求把故障定位到实施修理时可更换的产品层次(可更换单位)的过程称为故障隔离。故障诊断就是指故障检测和故障隔离的过程。
2024-01-22 10:02:02 73KB 神经网络
1
故障诊断相关的MATLAB代码,主要有神经网络算法的m文件
2022-10-21 17:45:52 2.75MB fault_code matlab 故障 故障诊断
1
人工智能-粗糙集神经网络故障诊断方法研究.pdf
人工智能-粗糙集神经网络故障诊断系统的方法研究及应用.pdf
神经网络故障诊断和数据预测的matlab程序
2022-05-07 20:22:26 2KB matlab
1
固有频率与故障距离之间存在数学关系,故障行波暂态能量在固有频率附近较集中,其暂态能量包含丰富的故障距离信息。利用人工神经网络(ANN)的非线性函数逼近拟合能力,建立直流输电线路故障定位的ANN模型。利用小波变换的等距特性提取单端线模电压7尺度的小波能量,并将其作为样本属性对神经网络进行训练、测试。所提方法将不易提取的固有频率点特征转化为容易提取的频带特征,提高了测距的可靠性。数字实验结果表明,所提方法在不同过渡电阻和不同故障距离下均能准确测距。
1
提出一种基于粗糙集 CMAC神经网络的智能互补融合的诊断策略.该策略利用粗糙集理论对数据样本进行数据浓缩,提取初步的诊断规则.对初步的诊断规则通过神经网络进行粗映射,利用神经网络的分类逼近能力,建立故障状态空间到诊断空间的精确映射.大大提高了神经网络的收敛速度和逼近精度.将该神经网络应用于的变压器故障诊断实例,结果表明,该神经网络具有分类逼近能力强,计算量小等优点.诊断正确率比普通神经网络的诊断正确率高.
2022-03-09 11:38:17 205KB 自然科学 论文
1
分析了煤矿通风机的常见故障,在介绍BP神经网络原理和算法的基础上,建立了基于BP神经网络模型的通风机故障诊断模型,并应用数学软件MATLAB中的神经网络工具箱实现了通风机不同故障状态的识别。研究结果表明,该方法能准确地诊断通风机的故障类型,具有简单、准确的特点,为实现煤矿通风机的故障预警和保障煤矿的安全生产具有指导意义。
2022-01-22 00:49:22 309KB BP神经网络 故障诊断 通风机 MATLAB
1