内容概要:本文详细介绍了基于gm/ID方法设计三阶反向嵌套米勒补偿运算放大器(RNMCFNR)的设计流程与性能指标。该放大器采用0.18µm工艺,优先考虑高增益和低功耗。文中首先推导了传递函数,并通过AICE工具进行验证。接着,利用Cadence Virtuoso和Spectre设计工具对电路进行了仿真。最终,设计结果显示:直流增益为109.8 dB,带宽为2.66 MHz,相位裕度为79度,压摆率为2.4/-2.17 V/µs,输入参考噪声电压为2.43 fV/√Hz,共模抑制比(CMRR)为78.5 dB,电源抑制比(PSRR)为76 dB,总功耗为147 µW。 适合人群:具备一定模拟电路设计基础,特别是对CMOS运算放大器设计有一定了解的研发人员和技术人员。 使用场景及目标:①理解反向嵌套米勒补偿技术及其在三阶运算放大器中的应用;②掌握gm/ID方法在运算放大器设计中的具体实施步骤;③评估设计的性能指标,如增益、带宽、相位裕度、压摆率、噪声、CMRR和PSRR等;④学习如何通过仿真工具验证设计方案。 其他说明:本文不仅提供了详细的数学推导和电路仿真结果,还展示了设计过程中每一步的具体参数选择和计算方法。建议读者在学习过程中结合理论分析与实际仿真,以便更好地理解和掌握三阶CMOS运算放大器的设计要点。
2025-11-10 16:12:52 2.12MB CMOS OpAmp设计 模拟集成电路 补偿网络
1
磁耦合谐振式无线电能传输电路系统板LCC-S拓扑补偿网络:STM32主控驱动MOS管,谐振补偿与稳压输出至ESP芯片无线传输数据技术,磁耦合谐振式无线电能传输电路系统板LCC-S拓扑补偿网络:STM32主控+ESP通信+稳压输出与WiFi实时传输方案,磁耦合谐振式 无线电能传输电路系统板 LCC-S拓扑补偿网络 发射端电路采用Stm32f103c8t6主控,四路互补带死区的高频PWM与ir2110全桥驱动MOS管。 同时利用LCC器件谐振,所有参数确定和计算由maxwell和simulink计算得出。 接收电路利用S谐振网络补偿。 同时输出电压经过稳压后供给esp芯片,后者将输出电压通过ADC采样后利用2.4G wifi下的MQTT协议传输给电脑 手机端查看,并实时通过数码管显示。 资料见最后一幅图。 stm32和esp8285单片机均板载串口电路,只需一根typec数据线即可上传程序 默认只是相关资料(如果需要硬件请单独指明) ,无线电能传输;电路系统板;LCC-S拓扑补偿网络;磁耦合谐振式;发射端电路;Stm32f103c8t6主控;高频PWM;ir2110全桥驱动MOS管;LC
2025-10-18 00:24:31 13.62MB csrf
1
"双环控制下的Buck变换器研究:传递函数建模与主功率补偿网络设计",Buck变器双环控制:平均电流和峰值电流控制。 主功率建模后得到传递函数,从而设计不同控制模式下的补偿网络,以及峰值电流控制下次谐波振荡时斜坡补偿斜率要求。 补偿器设计由零极点的传函到运放或者TL431+光耦都可以。 ,Buck变换器;双环控制;平均电流控制;峰值电流控制;传递函数;补偿网络;斜坡补偿斜率;补偿器设计,Buck变换器双环控制策略研究:传递函数与补偿网络设计 双环控制系统作为电力电子领域的一项核心技术,其在Buck变换器中的应用已成为研究热点。Buck变换器是一种直流-直流转换器,主要用于降低直流电压。在双环控制系统中,Buck变换器的控制方式主要分为平均电流控制和峰值电流控制两种模式。这两种控制模式各有其特点,平均电流控制模式能够有效地减少输出电压纹波,而峰值电流控制模式则能够提高系统的动态响应速度和稳定性。 在对Buck变换器进行双环控制的研究中,首先需要进行主功率建模,即根据变换器的电路结构和工作原理,推导出其数学模型。通过对电路元件的电压、电流关系进行分析,可以得到Buck变换器的传递函数。传递函数是系统动态特性的数学表达,它描述了系统输出量对于输入量的响应关系。在传递函数的基础上,研究者可以进一步设计出适合不同控制模式的补偿网络补偿网络的设计是双环控制策略中的关键环节。补偿网络的作用是改善变换器的频率响应特性,提高系统稳定性和快速性。补偿网络设计通常包括零极点配置,零点用于提升系统增益,极点则用于增强系统阻尼。通过适当配置零极点,可以对Buck变换器的频率响应进行优化,从而达到理想的控制效果。 在峰值电流控制模式下,由于次谐波振荡问题的存在,需要引入斜坡补偿机制。斜坡补偿斜率的选择对于控制性能有着重要影响。斜坡补偿能够防止电流控制环进入不稳定状态,提高电流控制环的抗干扰能力和稳定性。 补偿器设计是实现补偿网络的关键步骤。在设计补偿器时,可以从零极点的传递函数出发,选择不同的实现方式,例如使用运算放大器(运放)或者利用TL431+光耦组合。运放和TL431+光耦是电力电子领域常用的补偿器实现元件,它们各有优势和局限性,选择时需要根据具体应用场合和性能要求进行权衡。 Buck变换器双环控制策略的研究不仅限于理论分析和仿真验证,还包括实际电路的设计与实验。通过对变换器性能的深入研究,可以进一步探索更多创新的控制策略和优化方法,为电源管理领域的发展贡献力量。 双环控制系统在Buck变换器中的应用表明了电力电子技术的复杂性和多样性。随着技术的不断进步,新的控制理论和方法将不断涌现,为电力电子系统提供更加高效、稳定和可靠的控制解决方案。
2025-04-07 19:30:50 888KB
1
图腾柱无桥PFC,平均电流控制。 环路建模然后设计出电压环和电流环补偿网络,零极点放置。 PLECS、psim和simulink均验证过,均有对应模型。 同时Dual-boost PFC及两相、三相交错并联图腾柱PFC均有。
2023-10-26 11:07:33 435KB 网络 网络
1
Buck电路是一种降压斩波器.降压变换器输出电压平均值Vo等于占空比乘以输入电压Vin。通常电感中的电流是否连续,取决于负载的大小,所以简单的BUCK电路输出的电压不稳定,一旦负载突变会造成严重后果。加入3阶运算放大器补偿器以实现PID控制。可通过采样环节得到PWM调制波,再与基准电压进行比较,通过PID控制器得到反馈信号,与三角波进行比较,得到调制后的开关波形,将其作为开关信号,从而实现BUCK电路闭环PID控制系统。
2023-04-19 19:55:45 216KB 自然科学 论文
1
(word完整版)D-PI-PID补偿网络.doc
2022-10-24 09:01:00 82KB 互联网
1
电源环路设计领域的经典文章,Intersil专家写的.
2022-04-01 09:57:11 208KB 电源设计 环路 补偿网络
1
增设单极点、单零点的Pl补偿网络,有的文献称为单极点、单零点补偿网络。图1(a)所示即为增设单极点、单零点的PI网络电路图,图中Z1(s)=R1,z2(s)=(1/sC∥CR2+1/sC2)。符号∥表示并联。于是,增设单极点、单零点PI补偿网络的传递函数为         除了积分器1/s产生的极点s=0外,还有一个零点-1/TZ,一个极点-1/TP,均位于左半S平面。  图1(b)为增设单极点、单零点PI网络的幅频及相频特性,图例中,零点频率fz为505Hz,极点频率fp为50kHz。  图1 增设单极点、单零点的PI补偿网络        图2为应用这种网络(其幅频特性为|Κ
1
基于上华0.5 μm工艺设计了用于DC/DC的CMOS低压差线性稳压器,其输入电压为3.3 V,输出电压为1.2 V,最大输出电流为100 mA; 提出了一种补偿网络,保证负载电流发生变化时,LDO具有高稳定性。此外,还设计了一种瞬态响应改善电路来提高负载瞬态响应。仿真结果表明,该 LDO在不同负载情况下的相位裕度均为80°,流片测试结果显示瞬态响应良好。
2022-03-17 15:34:36 339KB 补偿网络
1