Gist-LIBLINEAR-CIFAR-10 项目中的训练数据和测试数据是从网络上下载的CIFAR-10,考虑太大,没有传来,运行程序只需要把data_batch1.mat --- data_batch5.mat 和test_batch.mat加入文件中, 就可以在MATLAB中运行.m程序了。 打开MATLAB 运行TrainGist.m 文件 进行训练数据的特征提取,会在E盘下面生成一个Feartures.txt 文件,运行TestGist.m文件,提取测试数据特征,保存在E盘test_data.txt文件当中;然后就得到Train和Predict的输入文件了。 再用Train和Predict进行训练和测试。 打开运行cmd,进入文件目录, 在该目录下输入train -S type Feartures.txt type可以是从0到7 表示,训练模式。 得到一个Feartures
2025-04-16 09:04:00 924KB MATLAB
1
1、能够自动地采集和识别学生的人脸信息,实现学生的身份验证和考勤记录,无需学生进行任何操作,也无需教师进行任何干预,提高了考勤的速度和准确性。 2、能够实时地将考勤数据上传到服务端,实现考勤数据的安全和可信,无需考虑数据的丢失或损坏,也无需担心数据的篡改或泄露,保障了考勤的公正和透明。 3、能够提供丰富的考勤数据的分析和展示,如考勤率、考勤分布、考勤趋势、考勤异常等,可以帮助教师和学生了解和改进自己的出勤情况,提升了考勤的意义和价值。 本课题的研究内容主要包括以下几个方面: 考勤签到系统的建立与完善:该模块有客户端与服务端,客户端包括发送模块,功能模块和接收模块;服务端包括签到模块、发送模块,接收模块与数据库模块。 人脸识别模块的设计和实现:该模块负责采集和识别学生的人脸信息,实现学生的身份验证和考勤记录。该模块采用了特征提取方法,可以有效地提取和学习人脸的特征,处理人脸的变化和差异,提高人脸识别的准确率和鲁棒性。并生成yml模型,通过调用yml特征库进行快速识别。 用户画像的构建:首先统计学生签到签退次数和时间,对签到签退分别是上下午进行分析,并统计学生课堂学习的总时间。并对签到时间
2025-04-14 17:53:49 20.02MB 网络 网络 lstm 数据集
1
植物保护-深度学习-YOLOv5-病虫害识别训练数据集是一个精心策划的数据集,旨在为农业科技领域的研究人员提供强大的工具,以改善病虫害的识别和管理工作。数据集包含了10000张高清图像,覆盖了10余种常见的植物病虫害,每一张图像都经过了专业标注,确保了数据的质量和准确性。 为了进一步提升模型的泛化能力和鲁棒性,数据集经过了数据增强处理,包括随机旋转、翻转、缩放和裁剪等多种变换,从而扩大了训练数据的多样性。这种增强处理有助于模型学习到更多的特征,提高其在实际应用中的表现。 此数据集适用于深度学习框架YOLOv5,它是一个高效的目标检测模型,能够实时地识别和定位图像中的病虫害。通过使用这个数据集,研究人员可以训练和优化YOLOv5模型,使其在病虫害的早期检测和防治中发挥关键作用。 植物保护-深度学习-YOLOv5-病虫害识别训练数据集的推出,不仅能够促进农业科技的发展,还能够帮助农业生产者更有效地管理作物健康,减少农药使用,保护环境,实现可持续农业。
2025-04-05 21:57:31 93.95MB 深度学习 数据集
1
车牌识别技术是计算机视觉领域中的一个重要分支,主要应用于交通监控、智能停车场系统、无人驾驶等领域。在本数据集中,我们关注的是"车牌识别数据集CCPD+CRPD训练数据集多种不同颜色角度等车牌",这显然是一份专门用于训练车牌识别算法的数据资源。 CCPD(Chinese City Parking Dataset)和CRPD(Chinese Rural Parking Dataset)是两个广泛使用的中国车牌识别数据集,分别涵盖了城市和农村环境下的车牌图像。这两个数据集提供了大量的真实场景下拍摄的车牌图片,包含了各种复杂的环境因素,如不同的光照条件、拍摄角度、车牌颜色以及背景干扰,旨在帮助算法在实际应用中具备更好的鲁棒性和准确性。 这个数据集的特点在于它包含五种不同颜色的车牌:黑色、蓝色、绿色、白色和黄色。在中国,不同颜色的车牌通常代表不同的车辆类型或用途。例如,蓝色车牌通常是私家车,绿色代表新能源汽车,黄色则是大型或重型车辆,而黑色车牌则通常与外交车辆或外资企业有关。因此,训练模型识别这些颜色的车牌对于实现全面的车牌识别系统至关重要。 训练数据集的子文件名为"train",这表明这个压缩包包含的是训练集,用于训练机器学习或深度学习模型。训练集通常包含已标记的样本,即每个车牌图像都与其对应的标签(即车牌号码)相关联。这种标注信息是监督学习的基础,让模型可以通过学习这些样本来理解车牌的特征,并学会区分不同的车牌号码。 在训练过程中,模型会尝试学习如何从不同角度、光照条件和颜色的图像中提取关键特征。这可能涉及到边缘检测、颜色直方图分析、形状识别等图像处理技术。此外,深度学习模型如卷积神经网络(CNN)能够自动学习这些特征,通过多层抽象来逐步提高识别精度。 为了优化模型性能,通常会采用数据增强技术。比如,可以对原始图像进行旋转、缩放、裁剪等操作,模拟更广泛的拍摄条件,进一步增强模型的泛化能力。同时,合理的损失函数和优化器选择也是训练过程中的关键环节,以确保模型能够有效地收敛并达到预期的识别效果。 总而言之,"车牌识别数据集CCPD+CRPD训练数据集多种不同颜色角度等车牌"提供了一个丰富的训练平台,有助于开发和改进车牌识别系统,使其能够在复杂环境下准确地识别各种颜色和角度的车牌,对于推动智能交通系统的进步具有重要意义。通过深入学习和优化,这样的数据集可以帮助我们构建出更智能、更准确的车牌识别技术,为实际应用场景提供强有力的支持。
2025-03-21 13:46:40 76.51MB 数据集
1
中文股票评论文本训练数据
2025-02-03 13:26:29 1.08MB 数据集
1
"快递包裹YOLO训练数据集"指的是一个专门针对快递包裹识别的深度学习模型训练数据集。YOLO(You Only Look Once)是一种实时目标检测系统,它在计算机视觉领域广泛应用,尤其在物体识别方面表现出色。这个数据集是在COCO(Common Objects in Context)数据集的基础上进行了扩展和定制,以适应快递包裹的特定识别需求。 COCO数据集是一个广泛使用的多类别物体检测、分割和关键点定位的数据集,包含大量的图像和详细的注解,涉及80个不同的物体类别。而"快递包裹YOLO训练数据集"则更专注于快递包裹这一单一对象,这意味着它可能包含了大量不同形状、大小、颜色和背景的包裹图像,以确保模型能够处理各种实际场景中的包裹检测任务。 中提到的"已经打好YOLO格式的标签"意味着每个图像都配有一份YOLO的标注文件。YOLO的标签格式是每行包含四个部分:边界框的中心坐标(x, y),边界框的宽度和高度(w, h),以及该边界框内物体的类别概率。这种格式使得数据可以直接用于训练YOLO模型,无需进行额外的预处理。 "数据集 包裹YOLO数据集集 深度学习"进一步强调了这个资源的关键特征。数据集是深度学习模型训练的基础,特别是对于目标检测任务,高质量、丰富多样且标注准确的数据至关重要。包裹YOLO数据集集意味着这是一个专门针对包裹检测定制的集合,可以为开发者提供训练和优化YOLO模型的材料。深度学习是实现这一目标的核心技术,通过神经网络模型学习包裹的特征,从而实现高精度的检测。 在【压缩包子文件的文件名称列表】"train80"中,我们可以推测这可能是训练集的一部分,包含80个子文件或者80类包裹的样本。通常,训练集用于模型的学习,它将教会模型如何识别包裹,并通过不断的调整权重来优化性能。在实际应用中,还会有一个验证集和测试集用于评估模型的泛化能力和避免过拟合。 "快递包裹YOLO训练数据集"是一个专门为快递包裹目标检测设计的深度学习训练资源。它基于COCO数据集并进行了针对性的增强,提供了符合YOLO模型训练要求的标注,是开发高效包裹检测系统的理想起点。使用这个数据集,开发者可以训练出能够在物流自动化、无人配送等领域发挥重要作用的模型。
2025-01-04 12:19:00 219.95MB 数据集 深度学习
1
在IT领域,尤其是在计算机视觉和深度学习中,数据集是训练模型的基础,特别是对于像YOLO(You Only Look Once)这样的目标检测神经网络。本文将详细介绍"RM2023雷达站所用到的yolo神经网络训练数据集"以及与之相关的知识点。 YOLO是一种实时目标检测系统,由Joseph Redmon等人于2016年提出。其核心思想是将图像分割为多个网格,并让每个网格负责预测几个边界框,每个边界框对应一个物体类别概率。这种设计使得YOLO能够快速且高效地处理图像,适合于像雷达站这样的应用场景,其中快速、准确的目标识别至关重要。 该数据集"RM2023_Radar_Dataset-main"针对的是RM2023雷达站的特定需求,包含了两类目标:车辆和装甲板。这表明该数据集可能专门用于训练YOLO或其他目标检测模型来识别这两种目标。通常,这样的数据集会包括图像文件以及对应的标注文件,标注文件中列出了每张图像中各个目标的坐标和类别信息,这对于训练神经网络至关重要。 在训练神经网络时,数据预处理是关键步骤。图像可能需要进行缩放、归一化或增强操作,如翻转、旋转等,以增加模型的泛化能力。数据集需要被划分为训练集、验证集和测试集,以便监控模型的性能并防止过拟合。 对于YOLO模型,训练通常涉及以下步骤: 1. 初始化模型:可以使用预训练的YOLO模型,如YOLOv3或YOLOv4,进行迁移学习。 2. 编译模型:配置损失函数(如多类别交叉熵)和优化器(如Adam),设置学习率和其他超参数。 3. 训练模型:通过反向传播和梯度下降更新权重,调整模型以最小化损失。 4. 验证与调优:在验证集上评估模型性能,根据结果调整模型结构或超参数。 5. 测试模型:在未见过的测试数据上评估模型的泛化能力。 在"RM2023_Radar_Dataset-main"中,我们可能会找到图像文件夹、标注文件(如CSV或XML格式)、可能的预处理脚本以及训练配置文件等。这些文件共同构成了一个完整的训练环境,帮助开发者构建和优化适用于雷达站的YOLO模型。 总结来说,"RM2023雷达站所用到的yolo神经网络训练数据集"是一个专为雷达站目标检测设计的数据集,包括车辆和装甲板两类目标。通过理解和利用这个数据集,开发者可以训练出能够在实际环境中高效运行的YOLO模型,提升雷达站的监测和识别能力。在训练过程中,关键步骤包括数据预处理、模型编译、训练、验证和测试,每个环节都需要仔细考虑和优化,以确保模型的性能和实用性。
2024-10-29 23:37:08 1.18MB 神经网络 数据集
1
yolov5 yolo yolov7 明火烟雾 AI
2024-05-20 15:05:16 320.43MB yolov5
1
1. 样本图片准备 2. 打开 jTessBoxEditor ,选择 Tools -> Merge TIFF,打开对话框,选择训练样本所在文件夹,并选中所有要参与训练的样本图片 3 弹出保存对话框,还是选择在当前路径下保存,文件命名为ty.cp.exp6.tif 4. tesseract ty.cp.exp6.tif ty.cp.exp6 -l ty batch.nochop makebox 5. 打开 jTessBoxEditor ,点击 Box Editor -> Open ,打开步骤2中生成的ty.cp.exp6.tif ,会自动关联到 “ty.cp.exp6.box” 文件: 6. 使用echo命令创建字体特征文件 echo cp 0 0 0 0 0>font_properties. 输入内容 “cp 0 0 0 0 0” 7. 使用 tesseract 生成 ty.cp.exp6.tr 训练文件 在终端中执行以下命名: tesseract ty.cp.exp6.tif ty.cp.exp6 nobatch box.train 8. 生成字符集文件 在终端中执行以下命令: unicharset_extractor ty.cp.exp6.box 9. mftraining -F font_properties -U unicharset -O ty.unicharset ty.cp.exp6.tr 与 cntraining ty.cp.exp6.tr 生成之后手工修改 Clustering 过程生成的 4 个文件(inttemp、pffmtable、normproto、shapetable)的名称为 [lang].xxx。这里改为 ty.inttemp、ty.pffmtable、ty.normproto、ty.shapetable。 10. 合并数据文件 在终端中执行以下命令: combine_tessdata ty. tesseract b01.jpg result -l ty --psm 7
1
1.项目利用Python爬虫技术,通过网络爬取验证码图片,并通过一系列的处理步骤,包括去噪和分割,以实现对验证码的识别和准确性验证。 2.项目运行环境:Python环境:需要Python 2.7配置,在Windows环境下下载Anaconda完成Python所需的配置,下载地址为https://www.anaconda.com/,也可以下载虚拟机在Linux环境下运行代码。 3.项目包括4个模块:数据爬取、去噪与分割、模型训练及保存、准确率验证。用request库爬虫抓取验证码1200张,并做好标注。图片爬取成功后进行去噪与分割。处理数据后拆分训练集和测试集,训练并保存。模型保存后,可以被重新使用,也可以移植到其他环境中使用。 4.准确率评估:测试结果精度达到99%以上。 5.项目博客:https://blog.csdn.net/qq_31136513/article/details/131571160
2024-04-28 10:40:57 23.11MB python 爬虫 机器学习 验证码识别
1