该软件包包括用于通过 Alpaca HTP 接口与 ASCOM 设备通信的驱动程序。 ASCOM(请参阅https://ascom-standards.org )是一种跨平台协议,用于与天文设备(相机,望远镜,圆顶,滤镜轮等)进行通信。Alpaca( https://ascom-standards.org/Developer/ Alpaca.htm ) 是一个基于 HTTP 的协议,构建在 ASCOM 库上。 这些文件实现了一个基类 (ASCOMDdriver) 和派生类,用于与通用相机、望远镜、滤光轮和聚焦器设备进行通信。 驱动程序可以轻松扩展以支持其他 ASCOM 设备,如安全控制器、圆顶等。 要使用这些驱动程序,您必须安装 ASCOM 平台和 Alpaca (ASCOM Remote) 软件包。 使用您的设备运行和配置 ASCOM 远程服务器。
2025-08-06 16:48:31 11KB matlab
1
libfido2 libfido2提供了库功能和命令行工具,可通过USB与FIDO设备进行通信,并验证证明和断言签名。 libfido2支持FIDO U2F(CTAP 1)和FIDO 2.0(CT​​AP 2)协议。 有关用法,请参见examples/目录。 执照 libfido2已获得BSD 2条款许可。 有关完整的许可证文本,请参阅LICENSE文件。 支持平台 已知libfido2可在Linux,MacOS,Windows,OpenBSD和FreeBSD上运行。 在Linux上,可在git HEAD中获得实验性NFC支持。 文献资料 提供troff和HTML格式的文档。 也可以使用的。 绑定 .NET: 前往: Perl: 锈: 安装 发布 libfido2的当前版本是1.6.0。 请查阅Yubico的以获取源代码和二进制版本。 Ubuntu 20.
2025-07-16 14:43:20 561KB yubikey fido2
1
将众多SEMI协议集合到一个PDF文件里,包含: 主要包含标准: E4 - SEMI EQUIPMENT COMMUNICATIONS STANDARD 1: 消息传输基础,侧重于串口点对点通信,是底层通信协议。 E5 - SEMI EQUIPMENT COMMUNICATIONS STANDARD 2: 定义消息内容,包括设备状态监控、控制指令、物料与配方管理及异常处理。 E30 - GENERIC MODEL FOR...: 建立了设备通讯与控制的通用模型,是理解复杂制造装备通讯的基础。 E37 - HIGH-SPEED SECS MESSAGE SERVICES: 通过TCP/IP实现高速通讯,替代E4标准,适合现代网络环境。 E40 - Standard for Processing Management: 规定特定加工处理的管理标准,优化工艺流程。 E116 - Equipment Performance Tracking: 跟踪并分析设备性能,助力设备健康管理与故障诊断。 E84 - Specification For Enhanced...: 描述晶圆在AMHS中的高速传送标准,以及并行I/O接口规范,对构建无人工厂至关重要。 E87 - Specification For Carrier Management (CMS): 管理载具进出设备的过程,保证作业流程的顺畅与识别准确性。 E94 - Specification For Control Job Management: 进程控制标准,确保作业指令的有效执行。 E39 - Object Services Standard: 强调数据结构定义,为通用对象提供读/写服务,促进软件层面的互操作性。
2025-06-22 17:09:58 95.17MB semi SECS
1
​发布时间​:2004年,作为SECS-II标准的核心版本沿用至今。 ​扩展功能​: 新增对复杂数据结构(如晶圆映射、工艺管理)的支持。 细化流(Stream)与函数(Function)的定义,覆盖16个流(Stream 0至Stream 17),例如Stream 16用于工艺步骤协调。 ​改进点​: 明确事务超时机制(如T1-T4超时)和错误恢复逻辑 内容概要:SEMI E5-1104定义了半导体设备通信标准第2部分(SECS-II),该标准由全球信息与控制委员会批准,旨在为智能设备和主机之间的消息交换提供详细的解释规则。SECS-II不仅与SEMI设备通信标准E4(SECS-I)完全兼容,还支持多种消息传输协议。它定义了消息的结构、流和函数、事务和对话协议、数据结构等,并详细规定了18个不同流的消息用途,涵盖了设备状态、控制和诊断、材料状态、异常处理、数据收集、过程程序管理等多个方面。此外,SECS-II还涉及了计量单位的定义,并预留了一些流和功能代码供用户自定义。值得注意的是,SECS-II并不解决与使用相关的安全问题,用户需自行建立适当的安全措施。 适用人群:从事半导体制造设备与控制系统开发、维护的技术人员及工程师;参与半导体生产线自动化集成的项目管理人员。 使用场景及目标:①确保智能设备与主机之间的高效、可靠通信;②支持IC制造过程中常见的活动,如控制程序传输、物料移动信息、测量数据汇总等;③为用户提供灵活的消息定义机制,以适应特殊需求;④帮助开发者理解如何在设备和主机端实现SECS-II标准,从而简化设备集成过程。 其他说明:SEMI E5-1104特别强调了标准的实施可能涉及专利问题,提醒用户自行评估潜在的法律风险。同时,建议用户参考完整的SEMI设备通信标准文档,以获得更深入的理解和技术指导。
2025-06-22 17:08:12 2.66MB SECS-II SEMI 标准文档
1
内容概要:本文档详细介绍了SEMI设备通信标准SECS-II的消息传输协议及其具体应用,涵盖了消息头、事务超时、流和函数分配、事务协议、对话协议以及数据结构等内容。重点讨论了不同类型的流和它们的功能,如材料状态流、配方管理流等。文档还提供了具体的错误处理机制和事务流程,帮助开发者理解和实现SECS-II协议。 适合人群:半导体制造及相关行业的工程师和技术人员,尤其是那些需要进行设备间通信的系统集成和维护工作的专业人士。 使用场景及目标:本标准用于规范设备与主机之间的通信,确保设备之间的互操作性和可靠性。主要应用于半导体制造设备的控制系统中,帮助企业提高生产效率和产品质量。此外,开发者可以利用本标准进行设备集成、测试和维护。 阅读建议:本文档内容详尽且技术性强,建议在实际项目中结合具体应用场景进行学习。对于复杂的数据结构和事务流程,可以通过实验和调试来加深理解。 ps:pdf文字可复制
2025-06-06 18:46:28 998KB SEMI SECS-II 数据传输 通讯协议
1
内容概要:SEMI E5-1104定义了半导体设备通信标准第2部分(SECS-II),该标准由全球信息与控制委员会批准,旨在为智能设备和主机之间的消息交换提供详细的解释规则。SECS-II不仅与SEMI设备通信标准E4(SECS-I)完全兼容,还支持多种消息传输协议。它定义了消息的结构、流和函数、事务和对话协议、数据结构等,并详细规定了18个不同流的消息用途,涵盖了设备状态、控制和诊断、材料状态、异常处理、数据收集、过程程序管理等多个方面。此外,SECS-II还涉及了计量单位的定义,并预留了一些流和功能代码供用户自定义。值得注意的是,SECS-II并不解决与使用相关的安全问题,用户需自行建立适当的安全措施。 适用人群:从事半导体制造设备与控制系统开发、维护的技术人员及工程师;参与半导体生产线自动化集成的项目管理人员。 使用场景及目标:①确保智能设备与主机之间的高效、可靠通信;②支持IC制造过程中常见的活动,如控制程序传输、物料移动信息、测量数据汇总等;③为用户提供灵活的消息定义机制,以适应特殊需求;④帮助开发者理解如何在设备和主机端实现SECS-II标准,从而简化设备集成过程。 其他说明:SEMI E5-1104特别强调了标准的实施可能涉及专利问题,提醒用户自行评估潜在的法律风险。同时,建议用户参考完整的SEMI设备通信标准文档,以获得更深入的理解和技术指导。
2025-06-03 14:25:47 12.15MB SECS-II SEMI
1
本文选用了CC2450F128芯片作为蓝牙通信芯片,该芯片提供真正的单片低功耗蓝牙BLE解决方案,能够运行应用程序和BLE协议栈。CC2450F128芯片内部集成了高性能低功耗的8051微处理器核,片内提供来了128KB的Flash存储空间,对外支持UART和USB通信接口,所以非常适用于蓝牙4.0的应用解决方案。 本文探讨了基于蓝牙4.0的设备通信方案设计与实现,选用TI公司的CC2450F128芯片作为核心通信组件。该芯片具备低功耗蓝牙BLE(Bluetooth Low Energy)解决方案,集成了8051微处理器,内含128KB Flash存储,并支持UART和USB通信接口,适合蓝牙4.0的应用场景。 系统设计分为两部分:支持蓝牙4.0的手持设备(如智能手机、平板电脑)和基于蓝牙4.0的设备。两者通过蓝牙4.0协议交换数据,支持一对多的连接模式,使得手持设备能同时连接多个蓝牙设备,增加了功能的扩展性。 在详细设计与实现中,CC2450F128的外围电路包括必要的时钟晶振和天线设计,天线的阻抗匹配需根据具体需求调整。通信协议的扩展遵循蓝牙4.0标准,通过创建Service和Characteristic配置实现功能划分和服务定制。每个应用可能包含多个Service,每个Service下可包含多个Characteristic,以满足不同业务逻辑的需求。 系统性能分析主要关注信号强度、设备发现时间和稳定性。信号强度与距离的关系显示,信号强度在1米内快速衰减,随后随距离增加缓慢衰减,波动性较大。在实际应用中,需采取多次采样和历史数据校正等方法提高数据准确性。设备发现时间与距离成反比,近距离发现速度快,远距离则变慢,超过一定距离后可能无法发现设备。为保证系统稳定性,需考虑通信距离的选择。 在稳定性测试中,进行了设备发现压力测试,证明了在10米范围内,该解决方案能稳定处理100个蓝牙设备的连接,展示了较好的系统稳定性和较低的误报率。 总结来说,该设计提供了一种高效、低功耗的蓝牙4.0通信方案,利用CC2450F128芯片实现了灵活的设备连接和通信协议扩展,同时通过实际测试评估了系统的关键性能指标,确保了在实际应用中的可靠性和效率。这种方案对于开发基于蓝牙4.0的智能设备和应用具有重要参考价值。
2025-01-15 12:30:28 77KB CC2450 信号强度 通信协议
1
【Ophir用户命令】文档主要详述了与Ophir光功率计,如Nova 2,进行通信的协议和指令集。这份文档随着产品线的扩展和新功能的增加不断更新,旨在提供远程控制Ophir仪表的详细命令描述。 在修订历史中,可以看到文档的最新版本(05)增加了对Juno-RS和Ariel的支持,移除了USBI,添加了BD和AAHR命令。此外,还增加了多通道信息,新特性包括脉冲功率测量、快速功率测量、低频功率测量、外部触发和TTL输出。早期版本则涉及了Centauri和Juno+的更新,以及RS-232通信细节的增强。 文档强调所有命令基于ASCII命令和响应协议,这可能会导致数据传输速率不如使用OphirLMMeasurement COM对象时高效。因此,为了最优性能,推荐使用COM对象。然而,如果需要支持老代码或RS-232通信,该文档提供了必要的指导。 对于具体设备,Nova-II、Vega、StarBright和Centauri除了USB接口外,还支持RS-232通信。Juno-RS仅通过RS-232进行通信。然而,Pulsar在使用热释电传感器测量时,其远程控制能力受到限制,建议使用标准的COM对象方法来配合Pyroelectric传感器工作。 用户命令部分详细列出了每个命令的设备兼容性、示例和适用限制。这些命令允许用户远程配置和获取Ophir光功率计的测量数据,例如设置测量参数、启动和停止测量、读取当前读数等。这些功能对于自动化测试环境或需要远程操作的应用尤其重要。 在实际应用中,开发者可以根据这份文档提供的信息,编写程序来控制Ophir设备,实现定制化的测量和数据分析。例如,使用RS-232接口的设备可以通过串口通信协议发送特定的ASCII命令,然后接收设备返回的数据。同时,通过了解哪些设备支持特定的命令,可以确保代码的兼容性和效率。 【Ophir用户命令】文档是连接和控制Ophir系列光功率计的重要参考资料,涵盖了设备通信协议、命令使用、设备特性和限制,为开发人员提供了全面的技术支持。
2024-09-23 10:43:16 789KB 设备通信
1
能源行业标准 NB/T 33007-2013 电动汽车充电站-电池更换站监控系统与充换电设备通信协议 2013-11-28发布 2014-04-01实施
2024-05-21 15:40:23 763KB 通信协议
1
云快充平台与设备通信协议1.6
2024-04-30 14:18:50 1.39MB 网络协议
1