内容概要:本文介绍了人员睡岗玩手机检测数据集,该数据集包含3853张图片,采用Pascal VOC和YOLO两种格式进行标注,每张图片都有对应的xml文件(VOC格式)和txt文件(YOLO格式)。数据集共分为三个类别:“normal”、“play”、“sleep”,分别表示正常状态、玩手机和睡岗,对应的标注框数为2761、736和847,总计4344个框。所有图片和标注文件均使用labelImg工具完成,标注方式是对每个类别绘制矩形框。; 适合人群:计算机视觉领域研究人员、算法工程师及相关从业者。; 使用场景及目标:①用于训练和测试人员行为检测模型,特别是针对睡岗和玩手机行为的识别;②评估不同算法在该特定场景下的性能表现。; 其他说明:数据集仅提供准确合理的标注,不对基于此数据集训练出的模型或权重文件的精度做出保证。
2025-11-26 12:31:37 445KB YOLO 图像标注 数据集 目标检测
1
本文介绍了如何结合双目视觉技术和YOLO目标检测算法实现3D测量。双目技术通过两个相机模拟人眼视觉,计算物体深度信息,适用于三维重建和距离测量。YOLO算法以其快速高效的特点,适用于实时目标检测。文章详细阐述了双目标定、立体校正、立体匹配和视差计算的原理及实现步骤,并提供了相关代码示例。通过将双目技术与YOLO结合,成功实现了3D目标检测和体积测量,展示了较高的精度,但也指出周围环境需避免杂物干扰。 在本文中,双目视觉技术和YOLO目标检测算法被结合起来进行3D测量。双目视觉是一种利用两个摄像机模拟人类的双眼视觉的算法,可以计算物体的深度信息,非常适合进行三维重建和距离测量。通过双目技术,我们可以从两个不同角度拍摄同一个物体,然后通过计算两个图像之间的视差(即同一物体在两个图像中的相对位置差异),来推算出物体的深度信息。这种技术在机器视觉、自动驾驶汽车、机器人导航等领域有着广泛的应用。 YOLO(You Only Look Once)是一种实时的目标检测算法。它的特点是速度快,效率高,能够实时地在图像中检测和定位多个物体。YOLO将目标检测问题视为一个回归问题,将图像划分为一个个格子,每个格子预测中心点落在该格子内的边界框和类别概率。这种方法极大地提高了目标检测的效率。 文章详细介绍了如何将双目视觉技术和YOLO算法结合起来进行3D测量。需要进行双目标定,即确定两个相机的内部参数和外部参数。然后进行立体校正,使得两个相机的成像平面共面,并且两个相机的主光轴平行。接着进行立体匹配,找到左图和右图之间的对应点。最后进行视差计算,计算出对应点在两个图像中的相对位置差异,即视差。通过视差和双目标定的结果,可以计算出物体的深度信息,从而实现3D测量。 文章还提供了相关的代码示例,帮助读者更好地理解和实现双目视觉和YOLO的3D测量。通过实际的案例,我们可以看到,将双目视觉技术和YOLO结合起来,可以成功实现3D目标检测和体积测量,展示了较高的精度。但是,这种方法也有其局限性,比如周围的环境需要尽量避免杂物干扰,否则可能会影响测量的精度。 双目视觉技术和YOLO目标检测算法的结合,为3D测量提供了一种新的方法。这种技术具有速度快、精度高的特点,可以在许多领域得到应用。但是,如何提高测量的精度,避免周围环境的干扰,还需要进一步的研究和改进。
2025-11-25 15:42:45 75KB 计算机视觉 3D测量 目标检测
1
太阳能光伏板积灰灰尘检测数据集是专门为研究和开发目标检测算法设计的,特别是在检测太阳能光伏板上积灰和灰尘的场景。该数据集采用了Pascal VOC格式和YOLO格式两种标注格式,不包含图片分割路径的txt文件,而是包括jpg格式的图片以及相应的VOC格式xml标注文件和YOLO格式的txt标注文件。VOC格式广泛应用于计算机视觉领域,用于图片标注,而YOLO格式则是针对一种名为YOLO(You Only Look Once)的目标检测算法的特定格式。 整个数据集包含1463张图片,每张图片都进行了详细的标注。标注的总数也达到了1463,与图片数量相同,保证了数据集的完备性。标注的对象包括单一的类别,即“Dirt”,也就是积灰和灰尘。在这些标注中,“Dirt”类别的标注框数总计为6822个,这反映了数据集在目标检测上的细致程度和多样性。每个“Dirt”类别的标注都以矩形框的形式呈现,这些矩形框精确地标出了图片中积灰和灰尘的位置和范围。 标注工具选用的是labelImg,这是一个常用于目标检测数据集制作的开源标注软件,支持生成VOC格式的xml文件。此外,本数据集在标注过程中遵循了一定的规则,即对每一块积灰或灰尘区域都进行矩形框标注。值得注意的是,数据集虽然提供了大量的标注信息,但编辑团队在说明中特别提到,数据集本身不保证任何由此训练出来的模型或权重文件的精度,这意味着数据集仅提供准确合理的标注图片,而模型的训练效果还需进一步的验证和调整。 图片重复度很高是这个数据集的一个特点,这在实际使用时需要用户特别注意。用户可能需要根据自己的需求进行图片的筛选或进一步的图像处理,以避免在训练数据集中出现过多重复图片,从而影响模型学习的有效性。数据集提供的图片示例和标注示例能够帮助用户理解标注的准确性和规范性,有助于模型开发人员进行算法的调试和优化。 由于本数据集旨在检测光伏板上的积灰和灰尘,对于光伏能源行业具有重要意义。准确地检测出这些因素能够及时对光伏板进行清洁维护,保障光伏系统的效率和能源产出。因此,这个数据集对于研究光伏板自动检测技术、提高光伏板运维效率以及减少人力成本等方面都有潜在的应用价值。
2025-11-24 21:27:37 3.64MB 数据集
1
随着人工智能技术的快速发展,计算机视觉领域的研究与应用也在不断拓展和深化。其中,目标检测作为计算机视觉的核心任务之一,在各个行业中扮演着越来越重要的角色。特别是在军事领域,目标检测技术可以应用于军事车辆的识别、跟踪以及分析等,这对于提高军事侦察能力和快速反应能力具有重要意义。因此,针对军事车辆的目标检测数据集就显得尤为关键。 《深读CV 第72期》发布的“Military Dataset: 军事车辆目标检测数据集”正是为了满足这一需求。该数据集是专门针对军事车辆进行目标检测而设计的,旨在为研究者提供一个高质量的训练和测试平台,帮助他们开发更为准确和高效的检测算法。通过这个数据集,研究者可以更深入地分析和理解军事车辆的特征,从而优化算法在实际应用中的表现。 该数据集包含了大量经过精心标注的军事车辆图片,这些图片涵盖了多种不同类型的军事车辆,如坦克、装甲车、军用卡车等,其应用场景也涵盖了战场、训练场以及城市和乡村等多种复杂环境。图片的标注工作严格遵循目标检测的标准流程,详细记录了每辆车的位置、类别以及必要的属性信息,确保了数据集的质量和实用性。 使用这样的数据集,研究者不仅可以针对军事车辆的外观特征进行深度学习和模式识别,还能够探索如何在不同的环境下,如夜间、恶劣天气或伪装条件下,进行有效的目标检测。此外,该数据集还可用于开发新的算法,提高检测的准确性、速度和鲁棒性,尤其是在对抗电子干扰和物理遮挡等复杂情况时。 除了上述功能,这一数据集还能够促进人工智能技术在军事领域的跨学科合作。通过公开发布数据集,研究者、开发者和军事专家可以共同参与到数据集的完善、算法的设计和应用场景的探索中来,从而加速军事人工智能技术的创新和应用。 数据集的多样性和实用性使其成为研究目标检测技术的重要工具。它不仅提供了足够的样本量来支持深度学习模型的训练,还具有足够的多样性以适应不同的实际应用需求。这为人工智能研究者和工程师提供了一个宝贵的资源,有助于他们开发出更为先进的军事车辆检测系统。 随着人工智能在军事应用中的不断深入,如何确保技术的安全性和道德性也是必须考虑的问题。数据集的开发和应用应当遵循相关的法律法规和伦理标准,确保技术的进步不会带来不可控的风险。随着技术的不断发展,我们期待有更多高质量的数据集问世,为人工智能技术在军事领域的健康发展做出贡献。
2025-11-24 13:50:07 22.4MB 数据集
1
这是一个基于YOLOv8模型的视频目标检测项目,能够实时处理视频流,识别视频中的多个对象,并在视频帧上标注出检测结果。 下载资源后,详细的使用说明可以参考我CSDN的一篇文章:https://blog.csdn.net/qq_53773901/article/details/145784864?fromshare=blogdetail&sharetype=blogdetail&sharerId=145784864&sharerefer=PC&sharesource=qq_53773901&sharefrom=from_link
2025-11-23 17:00:35 141.68MB yolo Python
1
基于Flutter和YOLO11的跨平台目标检测应用,支持Android_iOS_Web_Windows平台。A cross platform object detection application based on Flutter and YOLO11, supporting Android_iOS_Web_Windows platforms..zip 随着移动设备和互联网的普及,跨平台应用开发变得越来越重要。Flutter作为一种新兴的跨平台开发框架,以其高性能、快速开发等优点受到开发者的青睐。YOLO(You Only Look Once)是一种流行的目标检测算法,能够实时地在图像中识别和定位多个对象。将Flutter与YOLO结合,开发出一个支持Android、iOS、Web和Windows平台的跨平台目标检测应用,为用户提供了一种全新的交互体验。 该应用的主要功能是在移动和桌面平台上实时识别和分析图像或视频中的对象。通过Flutter框架,开发者可以使用一套代码库为所有目标平台编写应用程序,大大简化了开发流程。YOLO算法的集成,使得应用能够在设备上本地运行目标检测,无需依赖远程服务器,从而保证了快速响应和数据隐私。 在技术实现上,Flutter利用其高效的渲染引擎,为不同操作系统提供一致的用户界面。而YOLO11作为算法的一个版本,通常意味着它在性能与速度上进行了优化,以适应更多样的应用场景。开发者需要对YOLO进行适当的封装,使其能够与Flutter框架无缝对接,保证算法在不同平台的兼容性和效率。 该跨平台目标检测应用的应用场景十分广泛,从智能安防到工业监控,再到零售业中的商品识别,都能发挥重要作用。例如,在零售业中,应用可以被用于库存管理,通过识别货架上的商品来自动更新库存信息,极大提高了工作效率。在安防领域,应用可以通过实时监控视频流来检测异常行为或入侵者,增强安全防护。 为了确保该应用在不同平台上的稳定性和性能,开发者需要进行大量测试,包括对不同分辨率的屏幕、不同性能的设备进行适配。同时,还需要优化YOLO模型的大小和速度,以适应移动设备的计算资源限制。在Web和Windows平台上,应用可能需要借助额外的插件或工具来实现本地运行和硬件加速,确保与移动端相似的用户体验。 此外,应用的用户界面和交互设计也是决定用户体验的关键因素。Flutter提供了丰富的UI组件库,使得开发者可以构建出美观且响应迅速的用户界面。设计时要考虑到目标检测的实时反馈,如何以直观的方式呈现检测结果,让用户能够轻松理解和操作。 该应用的成功部署需要考虑到实际业务需求和用户反馈,对应用进行持续的维护和迭代更新。开发者应收集用户在使用过程中遇到的问题,并根据反馈进行功能改进和性能优化。通过不断迭代,应用能够不断满足用户的新需求,拓展更多的应用场景。
2025-11-21 10:40:49 323KB
1
在海上船舶智能检测的精准监测与安全管控升级进程中,对船舶类型及航行状态的高效识别与动态追踪是提升航运监管效率、强化海上安全防护的核心要素。基于海事卫星与舰载雷达采集的实时数据解析并标注构建的多维度船舶识别数据集,能为 YOLO 等前沿目标检测模型提供贴合实际航海场景的训练样本,助力模型更精准识别复杂海况中不同类别的船舶 —— 尤其小型渔船(体积小巧易与漂浮物混淆)、大型货轮(载货状态导致轮廓变化)、特种作业船(设备搭载造成形态特异)、非船舶干扰(海上平台易引发误判),其识别需兼顾复杂环境(如风浪干扰、雷达杂波)与多样场景(如近岸繁忙水域、远海开阔航线)的识别精度,为船舶的航线规划、碰撞预警提供数据支撑,推动海事管理从人工监控向智能研判转变,实现监管效能与航行安全的提升。
2025-11-20 23:49:38 219.89MB 数据集
1
根据提供的文件信息,我们可以提取以下知识点: 1. 数据集名称:本数据集被命名为“光栅检测数据集”,并且是以VOC和YOLO格式提供的。 2. 数据集格式:该数据集提供了两种格式的标注方式,即Pascal VOC格式和YOLO格式。这意味着该数据集可以被用于不同的目标检测框架。 3. 文件内容与结构: - 数据集包含153张jpg格式的图片。 - 每张图片对应一个VOC格式的xml文件,用于Pascal VOC格式的标注。 - 同时每张图片也对应一个YOLO格式的txt文件,用于YOLO格式的标注。 - 文件集中不包含分割路径的txt文件,这意味着数据集不包含图像分割任务所需的数据。 4. 标注信息: - 数据集中标注的类别总数为1。 - 标注的类别名称为“guangshan”。 - “guangshan”类别的标注框数为276,表示在这个数据集中,标注工具共绘制了276个矩形框来标定“guangshan”类别的目标。 - 总框数为276,表明整个数据集中的目标数量即为276。 5. 标注工具和规则:数据集使用了labelImg这一常用的图像标注工具。标注规则是采用矩形框对目标进行标注。 6. 数据集的使用声明: - 数据集提供者声明,他们对使用该数据集训练的模型或权重文件的精度不作任何保证。 - 数据集只提供准确且合理标注的图片和标注信息,即数据集的质量保证仅限于数据的准确性和合理性。 7. 特别说明:文档中提到暂无任何特别说明,意味着文件中没有额外提供关于数据集使用条件、版权信息或其他附加信息。 8. 标注示例:文档提到了将会提供标注示例,这可能用于展示如何正确使用标注工具labelImg进行标注,以及标注文件的具体结构和格式。 总结以上知识点,本数据集为一个针对单一类别“guangshan”的光栅检测任务所设计的数据集,具有153张图片和相应的标注文件,按照Pascal VOC格式和YOLO格式进行标注,提供图像标注的矩形框示例,以及使用labelImg工具进行标注的规则。但需注意,数据集的提供者对最终模型训练结果的精度不予保证。
2025-11-18 11:14:08 762KB 数据集
1
在计算机视觉领域,目标检测是一项关键技术,用于识别和定位图像中的特定对象。YOLO(You Only Look Once)是一种高效且流行的实时目标检测系统,它以其快速和准确的性能受到广泛关注。本文将深入探讨“光栅目标检测数据”以及与YOLO数据集格式相关的知识。 标题“光栅目标检测数据Yolov数据集格式”指的是使用YOLO算法训练的目标检测模型所依赖的数据集。YOLO数据集通常包含两部分:图像文件和对应的标注文件。图像文件是普通的图片,而标注文件则包含了关于图像中每个目标对象的位置和类别的信息。 描述中的“已经划分好的train和val”表明数据集被划分为训练集(train)和验证集(val)。这种划分对于机器学习至关重要,因为训练集用于训练模型,而验证集用于在训练过程中评估模型的性能,防止过拟合。 在YOLO数据集中,标注文件通常是以.txt形式存在,每行对应图像中一个单独的对象。每一行包含了四个关键信息:对象的边界框坐标和对象所属的类别。边界框通常用四个坐标表示,即左上角的x和y坐标,以及右下角的x和y坐标。这些坐标通常是相对于图像宽度和高度的比例值,范围在0到1之间。 例如,如果一个标注文件有如下内容: ``` 0.1 0.2 0.3 0.4 5 ``` 这表示图像中存在一个物体,其边界框左上角位于图像的10%位置,右下角在30%位置,物体属于第6类(类别编号从0开始计数)。 YOLO的网络结构分为多个锚框(anchor boxes),预设了不同比例和大小的边界框,以适应不同尺寸和形状的目标。每个网格单元负责预测几个锚框,并对每个锚框预测物体的存在概率和类别的条件概率。 在处理“guangshan”这个特定的压缩包时,我们可以假设它包含了一系列与光栅相关的图像及其对应的标注文件。光栅可能指的是光学设备或图像处理中的术语,但具体含义需根据数据集的上下文来理解。 为了训练一个YOLO模型,我们需要按照YOLO的格式组织这些数据,包括调整图像大小、将边界框转换为YOLO所需的格式,并确保训练和验证集的划分合理。训练过程中,模型会逐步学习识别和定位光栅图像中的目标。 优化模型性能通常涉及调整超参数,如学习率、批大小和训练轮数,以及可能的模型架构修改。训练完成后,我们可以使用测试集进一步评估模型的泛化能力,确保它在未见过的数据上也能表现良好。 “光栅目标检测数据Yolov数据集格式”是一个关于使用YOLO算法对光栅相关图像进行目标检测的训练和验证数据集。通过理解和准备这样的数据集,我们可以训练出能够精确识别和定位光栅图像中目标的高效模型。
2025-11-18 11:12:18 231.34MB 目标检测
1
内容概要:本文档详细介绍了RF-DETR模型在自建数据集上的训练流程及遇到的问题解决方法。首先,训练环境配置要求Python版本不低于3.9,PyTorch版本需2.0以上,具体配置基于Ubuntu系统。接着,对于数据集有特定格式要求,即必须符合COCO数据集格式,若原始数据集为YOLO格式,提供了一段Python代码用于将YOLO格式转换成COCO格式,包括创建对应文件夹结构、调整图像尺寸、转换标注信息等操作。最后,给出了训练RF-DETR模型的具体代码示例,指定了预训练权重路径、数据集目录、训练轮次、批次大小等关键参数。 适合人群:具有一定深度学习基础,尤其是熟悉目标检测领域,并希望了解或使用RF-DETR模型进行研究或项目开发的研究人员和技术人员。 使用场景及目标:①帮助开发者快速搭建适合RF-DETR模型训练的环境;②指导用户按照正确格式准备数据集,特别是从YOLO格式到COCO格式的转换;③提供完整的训练代码,便于用户直接运行并调整参数以适应不同应用场景。
2025-11-17 23:21:26 3KB Python PyTorch 目标检测 detr
1