基于TCN-BiGRU-Attention的西储大学故障诊断分类预测:内置Matlab代码与处理好的轴承数据集,实现一键创新体验,《基于TCN-BiGRU-Attention的西储大学故障诊断分类预测:Matlab代码及处理好的轴承数据集一键实现》,TCN-BiGRU-Attention一键实现西储大学故障诊断分类预测 附赠处理好的轴承数据集 Matlab 代码直接附带了处理好的西储大学轴承数据集,并且是Excel格式,已经帮大家替到了程序里 你先用,你就是创新 多变量单输出,分类预测也可以加好友成回归或时间序列单列预测,分类效果如图1所示~ 1首先,通过堆叠3层的TCN残差模块以获取更大范围的输入序列感受野,同时避免出现梯度爆炸和梯度消失等问题每个残差块具有相同的内核大小k,其扩张因子D分别为1、2、4。 2其次,BiGRU获取到TCN处理后的数据序列,它将正反两个方向的GRU层连接起来,一个按从前往后(正向)处理输入序列,另一个反向处理。 通过这种方式,BiGRU可以更加完整地探索特征的依赖关系,获取上下文关联。 3最后,加入单头注意力机制,其键值为2(也可以自行更改),经全连接层
2025-07-20 23:19:43 676KB 哈希算法
1
PHM2012轴承数据集,真实的实验数据,描述滚珠轴承在整个使用寿命期间(直至完全失效)的退化情况。挑战集用于估计轴承的剩余使用寿命。共三种工况,每种工况共2个训练集,工况一和工况二有5个测试集,工况三有1个测试集。PHM挑战数据集为参与者提供了 6 个运行至故障的训练数据集,以建立他们的预测模型。同时截断了 11 个测试轴承的监测数据,并要求参与者准确估计 11 个剩余轴承的 RUL
2025-07-16 10:52:39 698.18MB 数据集
1
"PHM2012轴承数据集"是一个广泛用于故障预测与健康管理(PHM)研究的专业数据集,尤其在机械工程和工业物联网(IoT)领域。这个数据集源自2012年的IEEE PHM(Prognostics and Health Management)数据挑战赛,旨在推动健康管理系统的发展,帮助预测设备故障,提高维护效率,减少不必要的停机时间。 数据集的核心内容是关于滚动轴承的工作状态数据,这些数据通常包括传感器采集的各种信号,如振动、温度等。在实际应用中,滚动轴承是机械设备中的关键部件,其性能直接影响设备的整体运行效率和寿命。因此,通过分析这些数据,研究人员可以识别出轴承的异常行为,提前预测故障,从而采取预防性维护措施。 数据集中包含多个子文件,"ieee-phm-2012-data-challenge-dataset-master"这个文件名暗示了这是一个主数据集的根目录。在解压后,我们可以预期找到多个部分,可能包括: 1. **训练数据**: 这部分数据用于模型训练,通常包含了不同健康状态下的轴承样本,包括正常状态和各种故障模式。 2. **测试数据**: 测试数据用于评估模型的预测能力,可能不提供对应的故障标签,需要模型自行判断。 3. **元数据**: 描述每个样本的详细信息,如采样率、传感器位置、实验条件等。 4. **标签文件**: 提供了每个样本对应的故障类型或健康状态,这对于监督学习至关重要。 5. **说明文档**: 解释数据集的结构、格式以及如何正确使用这些数据。 在处理这个数据集时,研究人员可能采用以下方法: - **特征提取**: 从原始传感器信号中提取有意义的特征,如频率域的谱分析、时间序列的统计特征等。 - **数据预处理**: 包括噪声过滤、归一化、缺失值处理等,以优化模型性能。 - **建模与训练**: 可以用到多种机器学习算法,如支持向量机(SVM)、随机森林(RF)、深度学习(神经网络)等,训练模型识别健康状态和故障模式。 - **性能评估**: 使用交叉验证、ROC曲线、AUC、精度、召回率等指标来衡量模型的预测效果。 - **故障诊断与预测**: 利用训练好的模型对未知数据进行预测,识别潜在的故障状态,并估计剩余使用寿命(RUL)。 "PHM2012轴承数据集"为研究者提供了一个宝贵的平台,通过实践与探索,可以提升故障预测技术,进一步应用于航空、汽车、能源等众多行业的设备健康管理。
2025-04-21 16:11:49 728.06MB 数据集
1
西安交通大学轴承数据集网盘链接 | 永久有效 西安交通大学轴承数据集网盘链接 | 永久有效 西安交通大学轴承数据集网盘链接 | 永久有效 西安交通大学轴承数据集网盘链接 | 永久有效 西安交通大学轴承数据集网盘链接 | 永久有效 西安交通大学轴承数据集网盘链接 | 永久有效 西安交通大学轴承数据集网盘链接 | 永久有效 西安交通大学轴承数据集网盘链接 | 永久有效 西安交通大学轴承数据集网盘链接 | 永久有效 西安交通大学轴承数据集网盘链接 | 永久有效 西安交通大学轴承数据集网盘链接 | 永久有效 西安交通大学轴承数据集网盘链接 | 永久有效 西安交通大学轴承数据集网盘链接 | 永久有效 西安交通大学轴承数据集网盘链接 | 永久有效 西安交通大学轴承数据集网盘链接 | 永久有效 西安交通大学轴承数据集网盘链接 | 永久有效 西安交通大学轴承数据集网盘链接 | 永久有效 西安交通大学轴承数据集网盘链接 | 永久有效 西安交通大学轴承数据集网盘链接 | 永久有效 西安交通大学轴承数据集网盘链接 | 永久有效 西安交通大学轴承数据集网盘链接 | 永久有效 西安交通大学轴承数据集网盘链接 |
2024-04-28 15:28:08 85B
1
西安交通大学轴承数据集
2022-10-23 21:05:07 937.33MB 故障诊断数据集
1
按文件夹整理好的数据集,适合10分类,方便程序读取
2022-09-29 09:07:37 34.92MB 西储大学 轴承
1
CWRU轴承数据集(附说明文件)。包含所有原始数据,以mat文件格式保存。
2022-06-01 09:14:56 227.92MB 源码软件
1
内容如下: ①12k Drive End Bearing Fault Data # 12k驱动端故障数据 ②12k Fan End Bearing Fault Data # 12k风扇端故障数据 ③48k Drive End Bearing Fault Data # 48k驱动端故障数据 ④Normal Baseline Data # 正常数据 ⑤README.md ⑥说明文件_cn.doc # 说明文件(中文) ⑦说明文件_en.doc # 说明文件(英文原件) ---------- 数据格式:四种数据(①-④)均为.mat格式文件,详细数据说明建议阅读英文说明原件(⑦),建议首先使用Matlab对数据进行预处理。
2022-05-24 09:08:26 228.21MB CWRU 滚动轴承 数据集 Matlab
1
本资源提供NASA轴承数据集IMS,数据集分为三部分,因体积过大故上传至百度云盘,txt文件中包含下载链接及提取码,资源有问题可私信。
2021-11-23 10:28:51 75B IMS 辛辛那提轴承数据集
1
采用一维CNN神经网络算法,对西储大学轴承数据集分为10中故障类型进行故障识别,最终准确率很高;同时算法结构灵活,可以自定制网络及优化器,满足多张故障数据集。
1