### SG3525制作的1000W正弦波逆变驱动解析 #### 一、概述 本文档旨在详细介绍一种使用SG3525芯片制作的1000W正弦波逆变驱动电路的设计原理及实现方法。逆变器在现代电子设备中的应用极为广泛,尤其在太阳能发电系统、不间断电源(UPS)等领域发挥着重要作用。正弦波逆变器因其输出波形接近理想的正弦波而受到青睐,能够为各种家用电器提供稳定可靠的电力支持。 #### 二、SG3525简介 **SG3525**是一种高性能PWM控制器,常用于开关电源和逆变器的设计中。该芯片集成了振荡器、PWM比较器、电流检测放大器、死区时间控制等功能模块,具有较高的集成度和稳定性。其主要特点包括: - 内置振荡器频率范围宽广,可调范围大。 - 高精度PWM比较器。 - 软启动功能。 - 过流保护功能。 - 输出级可承受较大电流。 #### 三、逆变器设计方案 本方案的核心在于利用SG3525来实现高效率的PWM控制,进而获得高质量的正弦波输出。具体实现细节如下: ##### 1. 电路总体结构 整个逆变器由以下几个主要部分组成: - **SPWM发生器**:负责生成正弦波信号。 - **振荡器电路**:产生稳定的50Hz同步波,作为SPWM的参考信号。 - **精密整流电路**:用于将输入的交流电压转换为直流电压。 - **闭环稳压调节**:通过反馈机制调整输出电压,保持输出稳定。 - **加法电路**:将SPWM信号与同步波进行叠加,形成最终的PWM控制信号。 - **驱动电路**:采用SG3525为核心,驱动四个功率晶体管(Q1、Q2、Q3、Q4)工作在开关状态,实现逆变过程。 ##### 2. SPWM发生器 SPWM发生器是逆变器的核心组件之一,其主要功能是根据输入的正弦波信号和50Hz同步波信号生成PWM控制信号。本方案中采用了一种基于文氏电桥振荡器的设计,能够产生稳定的50Hz同步波,与SPWM信号相结合,确保了逆变器输出波形的纯净度。 ##### 3. 振荡器电路 振荡器电路用于产生稳定的50Hz同步波。通过精心设计的RC振荡电路,可以得到非常准确的50Hz同步波,这对于SPWM信号的产生至关重要。 ##### 4. 精密整流电路 精密整流电路的主要作用是将交流输入电压转换为稳定的直流电压。本方案采用了多个二极管组成的桥式整流电路,并辅以滤波电容C3等元件,以确保直流电压的稳定性。 ##### 5. 闭环稳压调节 为了保证逆变器输出电压的稳定性,设计中加入了闭环稳压调节电路。通过反馈回路,实时监测输出电压的变化,并据此调整PWM信号的占空比,从而达到稳定输出的目的。 ##### 6. 加法电路 加法电路的作用是将SPWM信号与50Hz同步波信号相叠加,生成最终的PWM控制信号。这一过程对于确保逆变器输出波形的纯正性至关重要。 ##### 7. 驱动电路详解 - **SG3525的配置**:SG3525作为核心控制芯片,其内部振荡器的频率设定为26kHz,通过调整R28和C7的值可以实现精确的频率调节。 - **死区时间设置**:通过R29和C8,可以设置适当的死区时间,避免上下桥臂同时导通导致短路。 - **过流保护**:R17、R15、R16以及VR2等元件共同构成了过流保护电路,当电流超过设定阈值时,会触发保护机制,避免功率晶体管损坏。 #### 四、关键元器件选型 - **功率晶体管**:选择合适型号的功率晶体管是确保逆变器性能的关键。本方案中,Q1、Q2、Q3、Q4分别作为左右两侧的上管和下管。 - **滤波电容**:选用10μF和470μF的电解电容作为滤波电容,以提高直流电源的质量。 - **集成电路**:除了SG3525外,还使用了NE5532和4081、4069等集成电路来完成信号处理和逻辑控制等功能。 #### 五、结论 本方案通过合理利用SG3525的强大功能,结合精密的电路设计,成功实现了1000W正弦波逆变驱动电路。这种逆变器不仅能够提供高质量的正弦波输出,还具备良好的稳定性和可靠性,适用于多种应用场景。
2025-09-10 16:25:19 35KB SG3525
1
2020年全国大学生电子设计大赛(B题)单相在线式不间断电源的逆变驱动程序SPWM。该工程用的STM32F103ZET6芯片,
1
前些时间自己动手弄了一个24V2000W的逆变器,现已完工,来晒晒,付原理图,欢迎大家指点,提出宝贵意见,也欢迎拍砖。废话不多说,先上图 这是整机测试的照片,拍照的时候输出还处于短路状态。 输出的正弦波,看着还行,EG8010的SPWM精度不够高,波形也就这样了。另外死区时间有点长(1uS),过零点那里不太好看,为了保证管子安全,我也不去调整了。 这个是满载测试,两个热得快,2100W左右,水完全沸腾了。最大带载过3000W,10秒左右,迫于直流电源压力太大(一大电源两小电源并联)没有继续测试。调节功率限制电位器,将最大功率限制在2500W左右,即大于2500W,机器工作不到两秒就关闭输出。短路保护也是短路两秒左右就关闭输出,由于EG8010程序原因,如果此时不断电,过几秒后会重新输出。此机启动能力不错,两根1000W的太阳灯并联,启动时间一秒左右。此机设计功率在2200W左右,标题写2000W是因为直流电源最大输出电流是100A,故只能测到2200W左右,2000W长时间测试过(大于12小时),实际估计长时间2500W没啥问题。 这是满载时前级场管的D级波形。 满载时前级场管的D级波形展开。 这是逆变器空载功耗测试,从两个万用表读数可以看出,空载功耗为24.6*0.27=6.642W,空载比较小,节能,适合光伏等新能源用。 前级环形变压器特写。用65*35*25的铁氧体磁环两个叠起来,初级3T+3T,用1mm漆包线16根并绕,次级用那种多股很细的漆包线缠在一起的线绕的42T,辅助电源3T。 用了4对ixfh80n10,80A,100V,12.5毫欧的内阻。整流管是4只MUR1560,两个450V470uF的大电解。24V输入用了4个35V1000uF的日本化工电容。 后级特写,后级功率管用的是4只FQA28N50。输出电感是用52mm的铁硅铝用1.5mm的漆包线绕120T,电感量1mH,电容是两只4.7uF的安规。后面调试的时候已经将后级高频臂换成两只FQL40N50,低频臂是两只FQA50N50 短路测试。机器短路保护灵敏,经过多次短路(短路开机、空载短路、满载短路、带载短路),前后一共应该上百次了,机器仍然安全工作,逆变器输出端子上接的两条引线都炸的伤痕累累,镊子也是。 以下是电路部分: 前级DC-DC功率板电路,常规推挽。 前级DC-DC驱动原理图。有欠压、过压、过流保护,过流保护用检测管压降实现。电路也是常规SG3525+LM393。 后级DC-AC原理图,采用的是常规电路,没有什么新颖的地方,唯一就是加入了高压检测电路。即直流高压大于240V时辅助电源才接通,后级开始工作。调试的时候还增加了辅助电源下降时关掉SPWM驱动的电路,防止当辅助电源降低而高压直流还较高时因为功率管驱动不足引起的炸管事故,增加这个功能后就可以安全的短路关机了。 SPWM驱动板电路,EG8010+IR2110,用检测管压降作为短路保护。
1
DC-AC(逆变+STM32驱动程序),这个主要是用于无线电能传输设计的资料。
2019-12-21 22:02:48 39.37MB STM32 全桥逆变 驱动程序 DC-AC
1
Simulink仿真模型-逆变驱动(SPWM驱动)
2019-12-21 20:41:05 56KB SPWM Simuli matlab 逆变
1