内容概要:本文详细介绍了利用A*算法进行多AGV(自动导引车)路径规划的方法及其在Matlab环境下的具体实现。首先,针对单个AGV,使用A*算法计算最短路径,采用曼哈顿距离作为启发函数,适用于栅格地图场景。其次,在多AGV环境中,通过时空冲突检测机制来识别路径重叠,并采取动态调整策略,如让低优先级AGV等待,确保各AGV能够顺利到达目的地而不发生碰撞。此外,还提供了可视化的路径动态演示和时间坐标曲线,帮助用户更好地理解和监控AGV的移动过程。文中给出了完整的代码框架,包括地图配置、AGV数量设定以及起终点随机生成等功能,适用于中小型场景的AGV调度。
适合人群:对机器人导航、路径规划感兴趣的科研人员和技术开发者,尤其是那些希望深入了解A*算法及其应用的人士。
使用场景及目标:本方案旨在解决多AGV系统中存在的路径交叉和死锁问题,提高物流运输效率。主要应用于自动化仓储、智能交通等领域,目标是通过合理的路径规划减少碰撞风险,提升系统的稳定性和可靠性。
其他说明:作者提到在实际运行过程中遇到了一些挑战,比如Matlab全局变量在并行计算时不稳定的问题,经过面向对象重构后得到了改善。同时,对于更大规模的AGV调度,可能需要探索更加高效的算法。
2025-09-11 17:17:27
322KB
1