雷达信号处理是雷达技术的核心组成部分,它直接决定了雷达系统的性能和探测精度。本手册中提到的IVS-948雷达模块是24GHz平面天线雷达的一部分,其后端信号处理涉及多个关键技术点,包括滤波电路设计、数字信号处理(DSP)技术的应用,以及提高雷达探测精度的措施。 雷达信号的前端处理通常需要通过滤波放大电路来优化,以确保有效信号的提取和放大。滤波电路的设计需要考虑多个方面,如滤波器的频率选择、增益设计、放大电路的结构、阻抗匹配以及排线长度等。例如,当雷达工作在调频连续波(FMCW)模式时,应滤除低频调制信号后再放大,以防止信号饱和失真;而在连续波(CW)模式下,则需要滤除干扰和噪声。 滤波放大电路的设计原则如下: 1. 滤波器频率的选择应根据雷达模块的调制频率来确定,以确保有效地滤除不需要的信号成分。 2. 整体增益应控制在60dB以下,以避免信号过载。 3. 多级放大电路中每一级的放大倍数不得超过30dB,以减少对信号质量的影响。 4. 负载阻抗的匹配需要在470Ω~1kΩ之间,以保证电路传输效率。 5. 选取低噪声运放,如MC33079型号,以降低系统的热噪声等。 6. 排线长度应控制在25cm以内,以减少信号干扰和噪声的影响。 数字信号处理是雷达信号后端处理的重要环节,它包括各种算法和技术,比如快速傅里叶变换(FFT)、脉冲压缩、信号滤波、目标检测和跟踪算法等。这些技术的使用可以对雷达回波信号进行分析处理,进而得到目标的距离、速度、方向等参数。 雷达探测精度的提高是雷达应用中的关键要求。影响探测精度的因素包括雷达系统的分辨率、稳定性和抗干扰能力等。信号处理中的滤波和放大电路设计,以及数字信号处理中的算法选择和实现都直接影响着雷达的探测精度。 本手册还提供了一些参考电路图,这些电路图展示了如何搭建符合特定增益和带宽要求的滤波放大电路。例如,文档中提到的带通滤波放大电路,其增益可以为20dB或者30dB,带宽可以设置为250kHz或者从30Hz到50kHz。 最终,雷达信号处理说明手册强调,随着雷达应用需求和技术的不断发展,信号处理技术和数据处理技术也在迅猛发展。雷达信号处理和数据处理技术的快速进步在信号形式、处理算法以及系统设计方法、硬件结构和实时处理软件编程等方面都有所体现。 由于雷达技术的不断进步,本手册所包含的信息可能会有所更新,因此手册中也声明了内容会定期变更,并提醒用户及时联系公司以获取最新版本的资料。所有这些信息的目的是为使用IVS-948雷达模块的客户提供技术支持和帮助,以确保雷达系统的正确使用和性能最大化。
2025-05-24 11:34:16 1.15MB 雷达传感器 信号处理
1
HypeLCNN概述 该存储库包含论文“具有用于高光谱和激光雷达传感器数据的光谱和空间特征融合层的深度学习分类框架”的论文源代码(正在审查中) 使用Tensorflow 1.x开发(在1.10至1.15版上测试)。 该存储库包括一套完整的套件,用于基于神经网络的高光谱和激光雷达分类。 主要特点: 支持超参数估计 基于插件的神经网络实现(通过NNModel接口) 基于插件的数据集集成(通过DataLoader接口) 培训的数据有效实现(基于内存的有效/基于内存/记录的) 能够在经典机器学习方法中使用数据集集成 神经网络的培训,分类和指标集成 胶囊网络和神经网络的示例实现 基于CPU / GPU / TPU(进行中)的培训 基于GAN的数据增强器集成 交叉折叠验证支持 源代码可用于在训练大数据集中应用张量流,集成指标,合并两个不同的神经网络以进行数据增强的最佳实践 注意:数据集文件太
2024-10-09 21:46:44 128KB deep-neural-networks tensorflow fusion lidar
1
摘要同时定位与建图(Simultaneous Locating And Mapping, SLAM)是移动机器人领域的热门研究课题。SLAM 是移动机器人实现智
2022-11-19 21:22:35 2.6MB
1
智能汽车传感器的虚拟测试仿真是智能驾驶整车在环或硬件在环测试的重要一环。针对毫米波雷达的虚拟测试的需要,本文研究了传感器注入法与黑盒模拟法在毫米波雷达测试中的性能差异。为了比较两种不同方法的特点,采用在相同的交通场景中测试,通过采集目标的纵向距离和速度,横向距离和速度等来对比分析传感器注入法与黑盒模拟法在毫米波雷达测试中性能。试验结果表明,在匀速、加减速、转弯场景中,传感器注入法与黑盒模拟法表现的性能基本一致。在上下坡与弯道场景中传感器注入法性能明显优于黑盒模拟法,可以在较为苛刻的工况下满足控制算法所需信号的需要。
1
激光雷达在自动驾驶中的应用
2022-06-26 19:50:39 220KB 自动驾驶 激光雷达 传感器 雷达检测
1
PCR雷达传感器XR112模组呼吸检测演示技术支持
2022-04-28 19:00:23 2MB PCR雷达传感器
1
描述 此参考设计展示了如何使用 IWR1642(TI 推出的一款采用集成 DSP 的单芯片毫米波雷达传感器)来实现室内和室外人员计数应用,同时实现低于 1GHz 无线通信。该参考设计采用了 IWR1642BOOST 评估模块 (EVM) 和 LAUNCHXLCC1352R1 无线 MCU LaunchPad:trade_mark:。该解决方案能够定位最远距离 6 米(近距离配置)和 14 米(远距离配置)的人员。 特性 演示硬件和软件,可使用 IWR1642 器件和毫米波雷达传感器来进行人员计数和跟踪 使用 CC1352 器件实现远距离低功耗低于 1GHz 无线连接 适用于收集器和传感器应用的 IEEE 802.15.4e 或 IEEE 802.15.4g 堆栈 毫米波技术可提供非常适用于环境效应的距离、速度和角度信息 覆盖 6m 距离的 120 度方位角视野,可通过采用不同的线性调频脉冲配置扩展至 14m 提供静态干扰消除和群组跟踪算法实现示例
2022-03-24 20:42:30 34.41MB 开源 电路方案
1
汽车是雷达传感器应用占比最大的下游应用领域,各雷达传感器在汽车应用占比均超过 80.0%。根据中汽协数据,2014-2018 年,中国汽车产量由 2,372.5 万辆上升至 2,781.8 万辆,年复合增长率为 4.1%,是全球最大的汽车市场。与此同时,消费者对汽车安全性要 求和智能驾驶需求的提升,推动雷达传感器需求量上涨。其中,超声波雷达装载量上涨,平 均增长幅度达到 17.7%,毫米波雷达装载量也从 2015 年的 12.3 万件激增至 2018 年的 500.7 万件,年复合增长率达到 244.0%(见图 2-4)。受益于中国雷达传感器装配数量的提升,中国雷达传感器用芯片行业市场规模持续
2022-03-09 10:27:23 1.58MB 3C电子 微纳电子 家电
1
汽车毫米波雷达传感器行业调研及趋势分析报告摘要
2022-01-29 09:03:24 451KB 行业分析
1
中国地形激光雷达传感器市场现状研究分析与发展前景预测报告(2022年版本).docx
2022-01-10 19:04:38 343KB 行业调查报告
1