FDAA是宝信研发的具有自主知识产权的软件产品。基于PC的过程数据自动采集,记录处理的快速数据采集系统。能对冶金企业、机械制造企业的生产加工过程进行过程数据采集、传递、存贮、监测和分析。 一方面,它不但能够实现过程数据的采集和监测。另一方面,对于现场采集的过程数据还可以进一步进行离线分析,为发生故障后的分析诊断提供有力的依据。具有高效、稳定、可靠、低成本等特点,是集过程数据采集、监测、分析与一体的采集平台。 FDAA是一款由宝信自主研发的高性能数据采集与分析软件,专为冶金、机械制造等行业的生产过程监控设计。该系统具备高速数据采集能力,能够实时捕捉到如电流、力矩、设备状态等关键生产参数,确保在快速生产线上也能获取准确的数据。FDAA不仅能进行实时监控,还能对现场数据进行离线分析,对于故障诊断和系统调试提供了强大支持。 FDAA的核心特性在于其高速响应,类似于高速摄像机,能够克服传统SCADA系统的采样周期限制,提供精确的监控数据,使生产过程透明化。此外,它也适用于基础自动化PLC程序的编制和调试人员,以及现场工程师和维护团队,他们在故障排查、产品质量优化及新产品开发中,都能依赖FDAA来获取关键信息。 系统架构上,FDAA采用客户端-服务器模式,通过标准以太网连接,支持多种工业以太网和现场总线协议,如UDP、Modbus/TCP、Profibus DP等,能够无缝集成各种PLC设备,如Siemens S7、Allen-Bradley Control Logix等。系统具备强大的数据采集和存储能力,可以同时记录上千路信号,包括模拟量、数字量和脉冲量,并且采样周期可灵活调整,最高可达1毫秒。 内置的OPC接口使得FDAA能够连接任何厂商的OPC Server,扩展了其兼容性。数据文件管理功能支持多用户网络访问,有自动清理功能,确保磁盘空间的有效利用。用户界面直观友好,允许用户灵活配置观测信号和多用户场景,提高了工作效率。 FDAA在各种应用场景中表现出色,如处理线、连铸、主轧线等冶金领域,以及造纸、有色、纺织、电力、制药和印刷等行业。24小时不间断的数据采集和存储能力确保了全时段的数据完整性,为生产过程的持续优化提供了坚实的基础。 FDAA是一款高效、稳定且成本效益高的数据采集平台,它在故障诊断、系统调试和生产过程监控方面扮演着重要角色,是现代工业生产中不可或缺的工具。
1
20230813-中信证券-中国宏观经济高频数据手册
2023-11-04 14:20:41 3.58MB
1
正态分布的尺度混合及有限混合 在最近股票收益率研究中!人们倾向于利用正态分布的尺度混合或有限混合。 尺度混合 对数收益率服从均值为u,方差为sigma^2的正态分布,但是方差是一个随机变量。 有限混合 一个有限混合的例子:
2022-11-26 23:13:07 2.93MB 高频数据
1
基于高频数据的分类信息混合分布GARCH模型研究
1
本资源是博主写论文期间用到的原始数据,内容是上证综合指数2019年至2021年3年间730个交易日的上证综指每分钟高频数据,除了实时交易价外,还包括最高、最低、交易额、交易笔数、收益率等等,是做股票市场高频数据分析的好材料。 一共4个文件,高频数据文件按年份2019,2020,2021三个文件, 同时附带了一份同时期上证综指日收益率数据。
2022-08-12 15:04:27 35.68MB 高频数据
1
ACD模型及其扩展——金融高频数据计量模型的新动态,鲁万波,,本文结合高频数据所表现出的独有特征系统地回顾了近年ACD(Autoregressive Conditioned Duration)模型及其扩展在国际、国内的发展状况,展望�
2022-05-19 16:50:42 335KB 首发论文
1
机器学习工程师纳米学位 顶石项目 项目:预测库存移动方向 安装 此项目需要Python 3.6和已安装的以下Python库: 您还需要安装软件才能运行和执行 我们建议安装 ,这是一个预包装的Python发行版,其中包含该项目的大多数必需库和软件。 代码 该代码在Notebooks文件夹中提供。 由于大小限制,不包括CSV文件和Clfs文件夹(经过训练的分类器池)。 跑步 在终端或命令窗口中,导航到顶层项目目录Notebooks/ (包含此自述文件)并运行以下命令之一: ipython notebook {name of notebook file}.ipynb 或者 jupyter notebook {name of notebook file}.ipynb 这将在浏览器中打开iPython Notebook软件和项目文件。 数据 该数据集由Github上某个帖子的1分钟库存数据
1
由于真实收益变动过程的不可观察性,因此在波动率预测评估中最具挑战性的问题之一是为事后波动率找到准确的基准指标。 本文使用澳大利亚股票市场的超高频数据来构建无偏的事后波动率估计量,然后将其用作评估各种实际波动率预测策略(基于GARCH类模型)的基准。 这些预测策略可允许创新的偏斜分布,并在标准GARCH波动率模型之外使用各种估计窗口。 在样本外测试中,我们发现,与使用基于稀疏采样的日内数据的实际波动率相比,使用无偏后波动率估计量,可以系统地减少所有模型规格的预测误差。 特别是,我们显示出三种基准预测模型在回报率和估计窗口分布不同的情况下胜过大多数修改后的策略。 比较三种标准的GARCH类模型,我们发现非对称功率ARCH(APARCH)模型在正常和金融动荡时期均表现出最佳的预测能力,这表明APARCH模型具有捕获Leptokurtic收益和典型波动率特征的能力。澳大利亚股市。
1
3M公司股票日简单收益率
2022-03-13 11:32:22 2.93MB 高频数据
1
高频数据看宏观:10月住宅价格走低-二线城市二手房销售回暖.pdf
2022-01-17 14:04:12 748KB Cyclone 弘玑独 报告