在本项目中,通过数据科学和AI的方法,分析挖掘人力资源流失问题,并基于机器学习构建解决问题的方法,并且,我们通过对AI模型的反向解释,可以深入理解导致人员流失的主要因素,HR部门也可以根据分析做出正确的决定。
2025-08-04 20:21:46 105KB 人工智能 机器学习
1
在本项目中,主题聚焦于研究生数学建模竞赛,特别是2021年华为杯数学建模大赛的D题,该题目涉及了乳腺癌的研究,利用机器学习与数据分析技术进行模型构建。荣获国家一等奖,全国排名第八,这充分体现了参赛团队在相关领域的深入理解和优秀技能。下面将详细探讨这一领域的关键知识点。 数学建模是应用数学解决实际问题的过程,它将复杂的现实问题转化为数学模型,然后通过数学方法求解,为决策提供依据。在研究生层次,数学建模要求学生具备扎实的数学基础,同时能够灵活运用各种数学工具,如微积分、线性代数、概率论和数理统计等。 乳腺癌是女性健康的一大威胁,研究它的早期诊断和治疗至关重要。在数学建模中,可能涉及到疾病的发展模型、风险评估模型或治疗策略优化模型等。这些模型需要考虑大量医学数据,包括病人的年龄、家族史、基因表达谱、影像学特征等,通过对这些数据的分析,可以预测疾病的发展趋势,提高诊断的准确性和个性化治疗的效果。 接着,机器学习是人工智能的一个分支,主要目标是让计算机系统能从数据中自动学习并改进。在乳腺癌研究中,机器学习算法如支持向量机(SVM)、随机森林(Random Forest)、神经网络等被广泛用于特征选择、分类和预测。例如,通过训练模型来识别乳腺X线摄影中的异常区域,以辅助医生进行早期筛查。 数据分析是处理和解释大量数据的过程,旨在发现隐藏的模式、关联或趋势。在本项目中,数据分析可能包括数据清洗、预处理、特征工程、模型训练和验证等步骤。利用统计学方法,如回归分析、聚类分析等,可以挖掘数据的潜在价值,为乳腺癌的预防和治疗提供科学依据。 此外,获得全国一等奖和全国第八的成就,表明团队在数据处理、模型构建、结果解释和报告撰写方面表现出色。他们可能采用了创新的建模思路,如集成学习、深度学习等先进技术,以及严谨的实验设计和结果验证,确保了模型的可靠性和实用性。 总结来说,这个项目涵盖了数学建模、机器学习、数据分析等多个核心领域,展示了数学在解决复杂问题上的强大能力,尤其是在医疗健康领域的应用。这样的研究不仅有助于科学的进步,也为未来的研究者提供了宝贵的参考和启示。
2025-08-02 09:10:25 46.47MB
1
内容概要:本文深入探讨了基于机器学习的负荷曲线聚类方法,重点介绍了K-means、ISODATA、改进的L-ISODATA以及创新的K-L-ISODATA四种算法。文章首先简述了k-means的基本原理及其局限性,随后详细讲解了L-ISODATA算法的改进之处,特别是在大数据集上的高效聚类能力。接着,文章阐述了K-L-ISODATA的进一步优化,强调其在数据处理速度和聚类准确率方面的显著提升。最后,通过多个评价指标如数据处理速度、聚类准确率和可解释性等,对这四种算法进行了全面对比分析。文中还提供了高可修改性和可扩展性的精品代码,方便研究人员和技术人员进行二次开发和优化。 适合人群:从事电力系统数据分析的研究人员、工程师以及对机器学习应用于电力系统的感兴趣的学者和技术爱好者。 使用场景及目标:适用于需要对大量电力负荷数据进行高效聚类分析的场景,旨在帮助用户选择最适合的聚类算法,从而优化能源管理和数据处理流程。 阅读建议:读者可以通过对比不同算法的优缺点,结合实际应用场景,选择最合适的聚类方法。同时,利用提供的高质量代码,可以快速实现并测试不同的聚类算法,加速研究和开发进程。
2025-07-29 20:12:18 989KB 机器学习 K-means 数据处理
1
carvana-image-masking-challenge:train 数据(数据分为train和mask,全部数据太大,单独上传,mask再另一个下载链接里) 数据介绍:2017 年 7 月,美国二手汽车零售平台 Carvana 在知名机器学习竞赛平台 kaggle 上发布了名为 Carvana 图像掩模大挑战赛(Carvana Image Masking Challenge)的比赛项目,吸引了许多计算机视觉等相关领域的研究者参与。
2025-07-29 18:00:30 408.47MB 机器学习 计算机视觉
1
Emotion-Domestic国内(亚洲)表情识别数据集
2025-07-29 15:20:35 235.79MB 数据集 人脸识别 机器学习
1
数据集是一个大规模的虹膜图像数据集,由中国科学院自动化研究所(CASIA)创建。该数据集包含来自 1000 名受试者的 20000 幅虹膜图像,每名受试者提供 20 幅图像。这些图像使用IKEMB-100 双眼虹膜相机采集,分辨率为 640×480 像素。数据集的特点:规模大:包含 1000 名受试者的虹膜图像,是首个公开的千人级虹膜数据集。图像质量高:使用先进的 IKEMB-100 相机采集,图像清晰,适合用于虹膜特征提取。多样性丰富:图像中存在多种类内变化,如眼镜佩戴、镜面反射等,增加了数据集的复杂性和实用性。虹膜识别算法研究:可用于开发和验证虹膜识别算法,包括图像预处理、特征提取、特征匹配等。分类与索引方法开发:适合用于研究虹膜特征的独特性,开发新的分类和索引方法。机器学习与深度学习:为深度学习模型(如卷积神经网络)提供丰富的训练数据,提升模型的准确性和鲁棒性。数据集为虹膜识别研究提供了宝贵的资源,帮助研究者深入探究虹膜特征的独特性和多样性,推动虹膜识别技术在生物特征识别领域的应用和发展。
2025-07-28 16:53:38 490.79MB 深度学习 机器学习 图像处理 计算机视觉
1
基于python的深度学习的人脸识别,识别率非常高,是一个国外友人写的,识别率非诚高
2025-07-26 14:37:06 26.58MB python 深度学习 开发语言 机器学习
1
吴恩达的机器学习课程主要包括两门,一门是在Cousera上的《机器学习》,另一门是他在斯坦福大学教授的《CS229: Machine Learning》。 Cousera上的《机器学习》课程侧重于概念理解,而不是数学推导。这门课程重视联系实际和经验总结,吴恩达老师列举了许多算法实际应用的例子,并分享了他们入门AI时面临的问题以及处理这些难题的经验。这门课程适合初学者,课程内容可以在Cousera网站上在线观看,需要注册后可申请免费观看。 斯坦福大学的《CS229: Machine Learning》课程则更加偏好理论,适合于有一定数学基础的同学学习。这是吴恩达在斯坦福的机器学习课程,历史悠久,仍然是最经典的机器学习课程之一。 机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。它专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径。 如需更多吴恩达机器学习课程相关内容,可以登录Coursera官网和B站查看课程介绍。
2025-07-23 12:27:49 48.01MB 机器学习
1
林轩田和吴恩达的《机器学习基石》课程笔记详细地涵盖了机器学习领域的基础理论和核心概念。林轩田在课程中细致地讲解了机器学习中的关键问题,包括学习问题的本质、如何对Yes-No问题进行学习、不同类型的学习方法、学习的可行性、训练与测试的区别、泛化理论、VC维、噪声和误差、线性回归、逻辑回归、线性分类模型、非线性变换、过拟合的危害、正则化、验证方法以及三个学习原则。 在《机器学习技法》部分,课程笔记深入讲解了支持向量机(SVM)算法的各种变体,包括线性SVM、对偶SVM、核SVM以及软间隔SVM。这些技术都是机器学习中实现有效分类的重要工具,对于AI算法工程师来说,理解和掌握这些技法对于实际应用至关重要。 林轩田在课程中不仅解释了算法的数学原理,还通过实例演示了如何在实际问题中应用这些机器学习技术。笔记内容的全面性,从基础理论到高级技法,为学习者构建了一个系统的机器学习知识体系。该课程笔记对于那些希望深入了解和支持向量机等机器学习算法的读者来说,是非常有价值的资料。 AI算法工程师在学习这些笔记时能够了解到机器学习的多维度内容,不仅包括基础的理论框架,还有针对实际问题的具体解决方法。AI有道这个专注于人工智能技术分享的平台提供了林轩田和吴恩达两位专家的权威讲解,通过这样的学习资源,学习者可以更快地掌握机器学习的核心知识,进而在人工智能领域更深入地发展自己的专业技能。 另外,这些笔记还适合对人工智能领域有兴趣的读者作为参考材料,有助于加深对AI算法原理和实现细节的认识。可以说,林轩田和吴恩达的这些课程笔记是机器学习领域学习者不可多得的宝贵资料,对于初学者和专业人士都有着重要的参考价值。
2025-07-23 12:08:38 311.93MB 机器学习笔记 吴恩达
1
机器学习是人工智能领域中最重要的分支之一,它使得计算机能够通过数据学习,并在没有明确编程的情况下做出决策或预测。吴恩达作为该领域的著名专家,他的课程和笔记常被用来作为学习机器学习的参考资料。在2025年发布的吴恩达机器学习笔记中,我们可以看到关于机器学习基础、监督学习和非监督学习、线性回归、逻辑回归、过拟合、高级学习算法等核心概念的深入讲解。 监督学习是机器学习的一种方式,其中包括回归算法和分类算法。回归算法通过历史数据找到变量之间的关系,并据此预测未知数值;分类算法则是将数据划分到某个类别中,例如判断邮件是垃圾邮件还是非垃圾邮件。非监督学习中,聚类算法和异常检测等方法不需要预定义的标签,而是直接对未标记的数据进行分析。 线性回归是回归算法中的一种基础形式,通过确定一条直线来最小化误差,预测连续的值。其训练集是用于模型训练的数据集,特征代表数据集中的每一个维度,而代价函数则是评价模型预测值与真实值之间差距的函数。梯度下降是常用的最优化算法,用于最小化代价函数,找到模型的参数。特征工程是在学习过程中不断发现新的特征变量,以改进模型的预测能力。 逻辑回归作为分类问题的解决方案,不适用于线性回归,因此引入了sigmoid函数,将线性方程转化为概率,适用于分类问题。决策边界是指定如何根据预测概率将数据分为不同类别。逻辑回归的损失函数需要重新定义,交叉熵损失函数是其中常用的一种。正则化是解决过拟合问题的技术,它通过引入惩罚项减少模型的复杂度,即减少特征量,缩小参数权重。 在高级学习算法部分,机器学习可以用于需求预测等复杂问题。神经网络的各个层可以捕捉输入数据的不同特征,通过全连接层的组合,使网络具有强大的学习和预测能力。多元线性回归和多项式回归使得模型能够处理更多维度的数据和非线性关系。 为了准确预测,机器学习模型需要适当的特征选择,特征缩放是必要的步骤,使得所有特征在同一尺度上,便于模型学习。特征选择和正则化有助于解决过拟合问题,保证模型的泛化能力。学习率选择对于梯度下降算法至关重要,决定了算法收敛的速度和质量。梯度下降过程中,需要对模型参数同时更新,而非逐个更新。 2025最新吴恩达机器学习笔记涵盖了机器学习的理论基础与应用实践,为学习者提供了深入理解机器学习算法、模型构建和优化的宝贵资源。
2025-07-23 12:05:54 125.28MB 机器学习
1