内容概要:本文介绍了基于GADF(格拉姆角场)和Transformer的轴承故障诊断模型。首先解释了GADF的作用及其在捕捉轴承旋转角度变化中的重要性,然后探讨了Transformer如何通过自注意力机制对GADF生成的图像进行分析,从而实现故障识别和分类。文中还提及了小波变换(DWT)和短时傅立叶变换(STFT)两种额外的数据转换方法,它们能提供时间-频率双域表示和局部频率变化捕捉,丰富了数据表达方式。最后,文章展示了具体代码实现和验证过程,强调了模型的可调性和优化潜力。 适合人群:从事机械设备维护、故障诊断的研究人员和技术人员,尤其是对深度学习和信号处理有一定了解的人群。 使用场景及目标:适用于需要对复杂机械设备进行高效故障检测的工业环境,旨在提升设备运行的安全性和可靠性。 其他说明:附带完整的代码和说明文件,便于读者理解和复现实验结果。
2025-09-22 23:47:00 913KB
1
"Matlab高级技术:高光谱数据全面预处理与特征选择建模分析",matlab处理 高光谱数据预处理(SG平滑、SNV、FD、SD、DWT、RL、MSC) 特征波段选择(CARS、UVE、SPA),建模(PLSR,RF,BPNN,SVR) 同时可以利用matlab提取高光谱影像的光谱信息,进行上述处理。 ,高光谱数据处理;SG平滑;SNV;FD;SD;DWT;RL;MSC;特征波段选择;光谱信息提取。,Matlab高光谱数据处理与建模分析 高光谱成像技术是一种能够获取物体表面反射或辐射的光谱信息的现代遥感技术。它通过对成千上万连续的光谱波段进行分析,提供比传统影像更加丰富的地物信息。由于高光谱数据具有数据量大、信息丰富、光谱分辨率高的特点,因此在遥感、矿物勘探、农业、食品工业等领域有着广泛的应用。然而,原始高光谱数据往往包含噪声和冗余信息,因此需要进行一系列预处理和特征选择来提高数据质量,以便于后续分析和建模。 在高光谱数据的预处理阶段,常用的处理方法包括SG平滑(Savitzky-Golay平滑)、SNV(标准正态变量变换)、FD(傅里叶变换去噪)、SD(小波去噪)、DWT(离散小波变换)、RL(秩最小二乘法)、MSC(多元散射校正)等。这些方法旨在去除随机噪声、校正光谱偏差、增强光谱特征等,以提高数据的信噪比和光谱质量。 特征波段选择是高光谱数据分析的另一关键步骤,它能够从众多波段中选取最有代表性和辨识度的波段,提高后续分析的准确性和效率。常用的特征波段选择方法包括CARS(竞争性自适应重加权抽样)、UVE(未校正变量估算)、SPA(连续投影算法)等。这些方法通过不同的算法原理,如基于最小冗余最大相关性、基于模型预测能力等,来优化特征波段的选择。 建模分析是将预处理和特征选择后的数据用于构建预测模型的过程。在高光谱数据分析中,常用的建模方法有PLSR(偏最小二乘回归)、RF(随机森林)、BPNN(反向传播神经网络)、SVR(支持向量回归)等。这些模型能够根据光谱特征进行有效的信息提取和模式识别,广泛应用于分类、定量分析、异常检测等领域。 Matlab作为一种高性能的数值计算和可视化软件,提供了丰富的工具箱和函数用于处理高光谱数据。通过Matlab,研究者能够方便地进行光谱信息提取、数据预处理、特征选择和建模分析等工作,极大地提高了高光谱数据处理的效率和准确性。 此外,文档中提及的"处理高光谱数据从预处理到特征波段选择与建模"系列文件,可能包含了更为详细的理论解释、操作步骤、案例分析等内容,为读者提供了系统学习和实践高光谱数据处理和建模分析的途径。 高光谱数据处理涉及多种技术手段和算法,目的是为了更高效、准确地从复杂的高光谱影像中提取有用信息。随着高光谱成像技术的不断进步和相关算法的不断发展,其在遥感和相关领域的应用前景将会越来越广泛。
2025-09-19 16:37:51 321KB ajax
1
基于Matlab设计:基于DWT+SVD结合傅里叶变换的数字图像水印水印系统
2025-06-05 19:01:15 10.54MB
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-06-05 14:32:39 3.41MB matlab
1
在图像处理领域,水印技术是一种重要的数字版权保护方法,用于在图像中嵌入不可见或微弱可见的信息,以证明所有权或者验证图像的原始性。在这个特定的项目中,我们探讨的是如何在3D DICOM(Digital Imaging and Communications in Medicine)格式的图像中应用水印,使用了离散余弦变换(DCT)和离散小波变换(DWT)的技术。MATLAB作为强大的数值计算和图像处理平台,被广泛用于此类应用的开发。 离散余弦变换(DCT)是一种将信号从时域转换到频域的方法,对于图像数据来说,它能够突出图像中的高频成分,如边缘和细节。在图像水印中,DCT常用来对图像进行预处理,然后在变换后的系数中嵌入水印信息,因为这些系数对人眼来说相对不敏感,但又足够显著以保证水印的稳定性和鲁棒性。 离散小波变换(DWT)则提供了一种多分辨率分析的方式,可以同时处理图像的时间和频率信息。在3D图像水印中,DWT的优势在于它可以对多维度数据进行分析,对于3D DICOM图像,DWT可以在三个轴上分别进行分解,从而更好地隐藏水印信息,同时减少对原始图像质量的影响。 DICOM格式是医学成像领域标准的数据交换格式,它包含了图像数据以及相关的元数据,如患者信息、扫描参数等。因此,在3D DICOM图像中嵌入水印,不仅需要考虑图像处理的技术,还需要遵循DICOM标准,确保水印不会破坏图像的临床意义和解析性。 MATLAB提供的工具箱如Image Processing Toolbox和Signal Processing Toolbox,为实现这种复杂的水印算法提供了便利。通过编写MATLAB脚本,我们可以实现DCT和DWT的计算,水印信息的嵌入和提取,以及对水印鲁棒性的测试,例如对抗常见的图像处理操作(如缩放、剪切、滤波等)。 在“3d watermarking.zip”这个压缩包中,可能包含以下内容: 1. MATLAB源代码文件(.m),实现了3D DICOM图像的读取、DCT/DWT处理、水印嵌入和检测的算法。 2. 示例3D DICOM图像文件,用于测试代码的正确性和效果。 3. 测试脚本,用于运行水印算法并进行性能评估。 4. 可能还有辅助文件,如README文档,解释代码的使用方法和注意事项。 这个项目展示了如何利用MATLAB结合DCT和DWT技术,在3D DICOM图像中实现高效的水印嵌入,这对于医学图像的版权保护和数据安全具有重要意义。通过深入理解和实践这些代码,新手可以快速掌握3D图像水印的基本原理和技术,并进一步研究更复杂的应用场景。
2025-04-17 00:18:09 3.02MB matlab
1
介绍小波变换的具体算法,及用MATLAB实现的方法
2024-03-06 21:02:49 1.27MB 数字水印
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-03-03 00:22:33 2.94MB matlab
1
(MATLAB)的DCT,DWT,DFT,LSB多方法数字水印,带GUI界面,攻击方法多,评价,鲁棒性 (MATLAB)的DCT,DWT,DFT,LSB多方法数字水印,带GUI界面,攻击方法多,评价,鲁棒性
2023-05-24 00:34:30 15.28MB 数字水印 图像识别
1
作为对信号进行稀疏分解的方法之一,正交匹配追踪(OMP)算法的MATLAB函数代码,将信号在完备字典库上进行分解,亲测可用,效果很好
2023-04-25 21:34:01 3KB 小波 OMP DWT
1
单水印算法在图像保护中功能较为单一,文中提出了一种基于分块的离散余弦变换DCT和离散小波变换DWT相结合的双水印算法。小波域水印算法基于人类视觉特性HVS对图像进行分解,具有较好的鲁棒性,可作为图像版权保护;基于分块的离散余弦变换水印算法鲁棒性较差但可块定位,可用于图像完整性认定。同时,设计嵌入模型时论证了两种水印的嵌入顺序,使后嵌入的dct域水印不会对先嵌入的dwt域水印形成攻击。经攻击测试,该算法DCT域水印可较好的反映出图像被篡改情况;同时DWT域水印对恶意攻击有较好的抵抗力,能作为版权保护的有效手段。
1