CS5366低功耗的Type-C to HDMI2.0 4K60产品 (<300mW),支持Type-C转HDMI2.0的显示协议转换芯片, 内部集成了PD3.0及DSC decoder, 并能按客户需求配置成不同的功能组合, 是目前集成度与功耗更小的一颗芯片。可替代GSV2201, 功能替代 VMM7100/VMR7100/VM6100, PS196/PS186/PS188/PS176 ,Type-C转HDMI 2.0 4K60+USB 3.0+PD3.1/3.0高集成度视频转换芯片方案 CS5366是一款高效能的USB Type-C/DisplayPort(DP)到HDMI2.0的转换器,设计用于连接USB Type-C源设备至HDMI2.0接收设备。这款芯片集成了符合DP1.4标准的接收器、符合HDMI2.0标准的发射器,以及两个CC控制器,用于实现DP交替模式和电源输送功能,一个服务于上游Type-C端口,另一个服务于下游端口。DP接口包括2条主通道、AUX通道和HPD信号。接收器支持每通道最高8.1Gbps(HBR3)的数据速率。 CS5366内置了HDCP引擎,支持HDCP1.4和HDCP2.3,确保了受保护内容的安全传输。内置的密钥提供了最高级别的HDCP密钥安全性。该芯片高度集成,适用于多种市场领域和显示应用,如适配器、坞站等。根据表1-1,CS5366提供不同功能和封装选项,如CS5363、CS5365和CS5366,支持最高4K@60Hz分辨率,其中CS5366支持PD3.0和HDCP,并采用QFN-48 6*6封装。 芯片的主要特性包括: 1. 支持最大分辨率和定时到4k@60Hz。 2. 支持DSC v1.2a,向下兼容早期版本。 3. 包含DSC解码器和通过模式。 4. 集成了32位RISC-V处理器和SPI闪存。 5. 若终端设备无EDID,CS5366将响应EDID。 6. 支持HDCP 1.4和HDCP2.3,内置密钥,可作为HDCP中继器。 7. 支持RGB 4:4:4 8/10/12-bit bpc和YCbCr 4:4:4, 4:2:2, 4:2:0 8/10/12-bit bpc颜色格式。 8. 支持最多32个声道的16/20/24-bit音频,最高可达192kHz采样率。 CS5366因其低功耗(<300mW)和高集成度而显得尤其出色,可以替代GSV2201,以及VMM7100/VMR7100/VM6100、PS196/PS186/PS188/PS176等其他芯片。此外,它还提供Type-C转HDMI 2.0 4K60Hz分辨率的视频转换方案,并结合USB 3.0和PD3.1/3.0功能,为开发者提供了一套高度集成的解决方案。
2025-10-27 22:15:45 612KB typec转HDMI typec转换芯片
1
内容概要:本文详细介绍了LT6911C这款HDMI收发芯片的开发资料,涵盖原理图、PCB设计要点、源代码以及寄存器配置方法。针对电源设计中的注意事项进行了说明,强调了不同电压之间的隔离措施,并提供了具体的寄存器初始化代码示例。此外,还分享了一些调试经验和优化建议,如通过逻辑分析仪检查EDID数据、处理CEC协议的状态机设计等。最后提到了PCB设计的一些特殊技巧,比如散热焊盘的处理方式和差分对长度匹配的方法。 适合人群:从事嵌入式系统开发的技术人员,尤其是对HDMI接口有一定了解并希望深入了解LT6911C芯片特性的工程师。 使用场景及目标:帮助开发者更好地理解和应用LT6911C芯片,在实际项目中能够正确地进行硬件电路设计、软件编程以及故障排查。 其他说明:文中提供的实例代码和实践经验对于提高产品性能和稳定性有着重要的指导意义。
2025-10-27 13:02:00 558KB
1
内容概要:本文详细介绍了LT6911C这款HDMI转MIPI芯片的开发资料,涵盖原理图、PCB设计、源代码及手册。文章首先强调了电源设计的重要性,指出模拟3.3V和数字1.8V必须分开供电,并提供了具体的电源初始化代码。接着讨论了PCB布局的技术要点,如MIPI差分线必须严格等长,以及差分对走线的注意事项。对于寄存器配置,文章深入探讨了色彩空间转换、分辨率检测、热插拔处理等常见问题及其解决方案。此外,还提到了一些调试技巧,如使用逻辑分析仪抓取I2C波形,确保配置正确性和系统稳定性。 适合人群:从事嵌入式系统开发、视频转换领域的工程师和技术爱好者。 使用场景及目标:帮助开发者掌握LT6911C芯片的具体应用方法,避免常见的开发陷阱,提高项目成功率。具体应用场景包括但不限于HDMI转MIPI的应用开发、视频信号处理等。 其他说明:文中提供的代码片段和实践经验有助于快速定位并解决问题,提升开发效率。同时提醒开发者关注芯片的手册细节,尤其是那些容易忽视的部分。
2025-10-27 13:01:05 826KB
1
CS5266BN芯片原理图,CS5266BN应用电路图,TypeC转HDMI+PD+U3三合一扩展方案电路设计,支持PD100W快充方案 CS5266BN QFN48小封装可以搭配2.0HUB 3.0HUB 2.0读卡 3.0读卡 RJ45网口以及3.5MM音频耳机输出,线较为简单,设计的多口PD100W的拓展坞,功耗小 【CS5266BN芯片】是用于TypeC接口转换为HDMI、PD充电和USB 3.0三合一扩展的集成电路。该芯片设计适用于QFN48小封装,能够与多种扩展设备配合使用,如2.0 Hub、3.0 Hub、2.0读卡器、3.0读卡器、RJ45网口以及3.5mm音频耳机输出。这种设计的优点在于简化了线路,使得构建一个支持PD100W快充功能的多口扩展坞成为可能,同时保持较低的功耗。 【TypeC转HDMI+PD+U3三合一扩展方案】: 1. **TypeC转HDMI**:CS5266BN芯片能够将TypeC接口的数据传输转换为HDMI信号,支持高清视频输出,适用于连接显示器或电视等设备。 2. **PD(Power Delivery)100W快充**:PD协议允许快速充电,CS5266BN支持最高100W的功率传输,满足高性能设备的快速充电需求,如笔记本电脑。 3. **USB 3.0(U3)扩展**:通过CS5266BN,TypeC接口可以转换为USB 3.0接口,提供高速数据传输,理论速度可达5Gbps。 【关键电路部分】: - **电源管理**:包括UP_VBUS和DOWN_VBUS,分别对应上拉和下拉电压,用于控制PD充电状态。VBUS_MON_UBB_D_PBB_D_N用于监测USB PD电压,确保充电过程的安全性。 - **配置引脚**:CFG_SCL和CFG_SDA是I2C通信接口,用于配置和控制CS5266BN的工作模式。 - **HDMI接口**:HDMI_Dx_P/N,HDMI_CK_P/N,HDMI_SCL,HDMI_SDA等引脚负责HDMI信号的传输。 - **USB 2.0/3.0端口**:USB TP_C_PLUG是USB Type-C连接器,USB3.0 DP-Alt模式提供高速数据传输,而USB3.0 Downstream Port则用于下游设备连接。 - **PD双角色端口**:Type-C PD Dual Role支持设备在供电和受电之间切换,实现灵活的电源管理。 - **GPIO和控制引脚**:如UFP_CC1、UFP_CC2等,用于检测和管理TypeC接口的状态。 - **滤波电容**:如C11、C24、C58等,用于稳定电源,滤除噪声,保证信号质量。 【电路设计注意事项】: 1. 选择合适的电阻和电容值,如R747K、R11M、C1410uF等,以满足电路的阻抗匹配和滤波需求。 2. 使用SBU1、SBU2等引脚处理USB Type-C的备用功能,如音频输出。 3. 确保VBUS MONITOR电路正确配置,监控USB PD的电压状态,防止过压或欠压情况发生。 4. 使用适当的信号隔离和屏蔽,例如D+、D-、Shield等,减少电磁干扰,确保数据传输的可靠性。 CS5266BN芯片原理图及其应用电路设计是构建高效、多功能的TypeC扩展坞的核心,涉及到PD充电、高速数据传输和多媒体输出等多个方面,需综合考虑硬件选型、电源管理、信号完整性等多个因素,以确保系统的稳定性和性能。
2025-10-23 23:46:27 286KB
1
内容概要:本文详细介绍了利用龙讯LT9721芯片将HDMI信号转换为EDP信号的技术方案,适用于1920×1080@60Hz分辨率。文中不仅提供了硬件设计的关键要点,如原理图中HDMI DDC通道的4.7k上拉电阻设置、PCB布局中TMDS差分对的等长处理以及电源部分的独立LDO供电,还深入探讨了软件配置的具体细节,包括关键寄存器的设置、EDP LINK速率的调整方法。此外,还分享了一个用于自动适应不同输入信号时序的Python脚本,确保系统能够快速响应并稳定运行。最后,针对功耗管理提出了实用建议。 适用人群:从事嵌入式系统开发、显示设备设计的专业人士,尤其是关注HDMI转EDP技术的应用工程师和技术爱好者。 使用场景及目标:帮助读者掌握完整的HDMI转EDP设计方案,从硬件电路设计到软件配置优化,再到实际应用中的调试技巧,最终实现高效稳定的视频传输。 其他说明:本文提供的资料对于开发便携屏幕或工业控制系统具有重要参考价值,同时强调了实际操作中的常见误区及其解决办法。
2025-10-15 13:46:55 481KB
1
内容概要:本文详细介绍了利用龙讯LT9721芯片将HDMI信号转换为EDP信号的技术方案,支持最高1920×1080@60Hz分辨率。文中不仅提供了完整的硬件设计方案,包括原理图和PCB布线要点,还深入探讨了关键寄存器设置、时钟配置以及EDP链路速率调整等软件配置细节。此外,特别提到了常见的调试技巧,如I2C工具检测EDID数据、解决雪花屏问题的方法,以及一个用于自动适应不同输入信号的Python脚本。最后讨论了系统的功耗管理与散热设计。 适用人群:从事嵌入式系统开发、显示接口转换模块设计的专业工程师和技术爱好者。 使用场景及目标:适用于需要进行HDMI转EDP项目开发的场合,帮助开发者快速掌握相关技术和最佳实践,确保产品稳定性和性能优化。 其他说明:本文提供的资料对于理解和实施HDMI转EDP转换具有重要指导意义,尤其是针对便携屏幕和工业控制系统应用。
2025-10-15 13:46:21 411KB
1
内容概要:本文详细介绍了使用龙讯LT9721芯片将HDMI信号转换为EDP信号的技术方案,涵盖硬件设计、寄存器配置、软件调试等多个方面。硬件设计方面强调了差分信号处理、电源管理以及PCB布局的关键要点;软件部分着重讲解了寄存器配置、中断处理和自动适应时序的Python脚本实现。此外,还提供了常见问题的解决方案,如开机花屏、信号不稳定等。 适合人群:从事嵌入式系统开发、视频信号处理领域的工程师和技术爱好者。 使用场景及目标:适用于需要将HDMI信号转换为EDP信号的应用场合,如便携屏幕、工业控制系统等。目标是帮助开发者快速掌握LT9721芯片的使用方法,实现稳定的1080P@60Hz视频传输。 其他说明:文中提供的实战经验和技巧来源于作者的实际项目经历,附有详细的代码示例和硬件设计建议。同时,提供了GitHub仓库链接,包含完整的PCB工程文件、Linux驱动源码和寄存器手册等资源。
2025-10-15 13:45:32 369KB
1
利用龙讯LT9721芯片将HDMI信号转换为EDP信号的技术方案,支持1920×1080@60Hz分辨率。文中涵盖了硬件设计要点,如原理图中的DDC通道设置、PCB布局优化以及高速信号线的处理方法;同时深入探讨了软件配置的关键步骤,包括寄存器配置、时钟配置、EDP链路速率调整等。此外,还提供了调试技巧和自动化脚本,帮助解决常见的显示问题并提高系统性能。 适用人群:电子工程师、硬件开发者、嵌入式系统设计师、从事便携屏幕或工业控制系统开发的专业人士。 使用场景及目标:适用于需要进行HDMI转EDP项目的设计与开发,旨在帮助技术人员掌握完整的解决方案,确保高效稳定的信号传输,提升产品性能和用户体验。 其他说明:本文不仅提供了详细的理论讲解和技术细节,还附带了实用的操作指导和代码片段,便于读者快速理解和应用。
2025-10-15 13:44:04 448KB
1
内容概要:本文详细介绍了利用OV5640摄像头进行图像采集并通过HDMI显示的技术实现过程。具体步骤包括使用Verilog代码配置摄像头、将图像数据通过AXI4总线传输至DDR3内存以及从DDR3读取数据并在HDMI显示器上呈现。文中还探讨了关键模块如FIFO缓存、AXI总线控制器状态机的设计细节,解决了诸如时钟分频、跨时钟域数据传输等问题。此外,文章提到了双缓冲机制的应用以避免图像撕裂现象,并讨论了DDR3延迟导致的问题及其解决方案。 适合人群:熟悉FPGA开发和Verilog编程的硬件工程师,尤其是对图像处理感兴趣的开发者。 使用场景及目标:适用于需要深入了解图像采集与显示系统的硬件工程师,旨在掌握OV5640摄像头与Xilinx FPGA配合使用的完整流程和技术要点。 其他说明:文章不仅提供了详细的代码片段,还分享了作者的实际经验,如遇到的具体问题及解决方法,有助于读者更好地理解和实践相关技术。
2025-10-14 15:18:06 4.13MB FPGA Verilog 图像处理 DDR3
1
内容概要:本文详细介绍了基于Xilinx 7系列FPGA的图像采集与显示系统的实现过程。系统采用OV5640摄像头进行图像采集,通过I2C配置摄像头的工作模式,将RGB565格式的图像数据经由AXI4总线传输并存储到DDR3内存中,最后通过HDMI接口输出到显示器。文中涵盖了各个模块的具体实现,如I2C配置、AXI4总线写操作、DDR3突发传输、HDMI时序生成以及跨时钟域处理等关键技术点。同时,作者分享了调试过程中遇到的问题及其解决方案,确保系统的稳定性和高效性。 适合人群:具备一定FPGA开发经验的硬件工程师和技术爱好者。 使用场景及目标:适用于嵌入式系统开发、图像处理、机器视觉等领域,旨在帮助读者理解和掌握基于FPGA的图像采集与显示系统的完整实现过程。 其他说明:文中提供了详细的Verilog代码片段和调试建议,有助于读者快速上手并在实践中解决问题。此外,还提到了一些常见的错误及优化方法,如跨时钟域处理、DDR3读写仲裁、HDMI时钟生成等。
2025-10-14 15:10:48 2.46MB
1