(1)注册登录:当用户想要对系统中所实现的功能进行查询管理的时候,就必须进行登录到系统当中,如果没有账号的话,可以在登录窗口中进行注册,然后再通过账号密码登录。 (2)用户:普通用户在前台可以轻松管理自己的账号。他们可以修改个人资料,确保信息的准确性;同时,为了账户安全,用户还可以随时更改密码。 (3)个人中心操作:在个人中心,用户可以查看和管理自己的收藏内容,无论是汽车信息还是充电站信息,都可以方便地收藏和查看。 (4)首页:用户在前台首页可以浏览到最新的汽车信息和充电站信息,快速了解市场动态。 (5)提醒通知:用户可以及时查看提醒通知,包括新的汽车信息发布、充电站更新、系统公告等,确保不错过任何重要信息。 (6)汽车信息:用户可以通过品牌、车型、发布时间等关键字搜索并查看汽车信息详情,对感兴趣的汽车进行点赞、收藏,并发表评论与其他用户交流。 (7)充电站:用户可以搜索并查看各个充电站的详细信息,包括名称、位置、充电桩数量等,对满意的充电站进行点赞、收藏,并发表评论分享使用体验。 后台管理员端:公共管理、用户管理、权限管理、汽车车型、汽车信息、充电站、销售信息、区域销售、购买信息
2025-04-24 12:37:09 42.84MB spark java idea springboot
1
SSM项目是一个基于Java技术栈的销售系统,其核心组件包括Spring、Spring MVC、Mybatis、Dubbo、Kafka、Redis以及Maven。这个项目展示了如何整合这些技术来构建一个高效、可扩展的企业级应用。 Spring作为基础框架,提供了依赖注入(DI)和面向切面编程(AOP)的功能,使得代码更加模块化和易于管理。Spring MVC作为Spring的Web层,负责处理HTTP请求,提供模型-视图-控制器(MVC)架构模式,帮助开发者构建清晰的业务逻辑与用户界面之间的交互。 Mybatis是轻量级的持久层框架,它简化了数据库操作,通过XML或注解方式配置和映射SQL语句,将Java对象和SQL数据库进行无缝连接。在SSM项目中,Mybatis用于处理数据访问,提高数据库操作的效率和灵活性。 Dubbo作为分布式服务框架,实现了服务的注册、发现、调用和治理,使得不同服务之间可以相互通信,提高了系统的可扩展性和容错性。在销售系统中,Dubbo可能被用来拆分复杂业务,创建微服务,实现服务间的高效协作。 Kafka是一种高吞吐量的分布式发布订阅消息系统,常用于日志收集、流式数据处理等场景。在SSM项目中,Kafka可能用于处理实时销售数据的传输和处理,保证消息的可靠传递,提高系统的实时响应能力。 Redis是一个高性能的键值存储系统,常作为缓存使用。在SSM项目中,Redis可以存储热点数据,减少对数据库的访问压力,提升系统性能。同时,Redis还支持多种数据结构,如字符串、哈希、集合、有序集合,这为解决多种业务场景提供了便利。 Maven是Java项目的构建工具,它管理项目的依赖关系,自动化构建流程,如编译、测试、打包等,使得开发过程更加规范化和高效。 SSM项目是一个集成了多种成熟技术的销售系统解决方案,它充分利用了Spring的灵活性、Mybatis的数据处理能力、Dubbo的分布式服务特性、Kafka的消息传输优势以及Redis的高速缓存功能。这样的设计确保了系统在处理大规模销售数据时的稳定性和性能,同时也便于团队协作和项目维护。通过学习和理解这个项目,开发者能够深入掌握Java企业级开发的相关知识和技术栈,对于提升个人技能和解决实际问题具有很高的价值。
2025-04-19 08:25:25 3.46MB 系统开源
1
本资源为燕山大学大数据三级项目,包括项目报告(英文版)和源码(可直接在虚拟机上运行),实现了新闻聚类和新闻分类。利用hadoop、spark和scala。其中有参考文件为如何在虚拟机上将scala文件提交到spark中 ;源码test.scala实现了新闻聚类,里面有分词(需要安装两个jar包),特征提取,利用kmeans聚类。output.libsvm为老师给的数据集的特征提取,就是spark官网上的代码总是读取libsvm,利用这个可直接读取,进行分类;分类有朴素贝叶斯和逻辑回归其中朴素贝叶斯准确率较高,逻辑回归准确率较低。navie为朴素贝叶斯源码,classify为逻辑回归源码。
2025-04-19 00:01:48 2.82MB 聚类 hadoop spark scala
1
在当前的数字化时代,电商平台面临着海量数据的处理挑战,如何从这些数据中挖掘价值并提供个性化的用户体验成为了关键。基于Hadoop和Spark的个性化推荐系统是解决这一问题的有效方案。这个项目实战旨在深入理解大数据处理技术和推荐系统的核心原理,通过实际操作提升分析和构建推荐系统的能力。 **Hadoop** 是一个开源的分布式计算框架,它允许在廉价硬件上处理大规模数据。Hadoop主要由两个核心组件组成:Hadoop Distributed File System (HDFS) 和 MapReduce。HDFS提供了高容错性的分布式存储,而MapReduce则为大规模数据集的并行处理提供了编程模型。在这个项目中,Hadoop将用于存储和预处理电商大数据,例如用户行为日志、商品信息等。 **Spark** 是一种快速、通用且可扩展的大数据处理引擎,它在内存计算方面表现优秀,比Hadoop更高效。Spark提供了更丰富的数据处理API,包括DataFrame和Spark SQL,使得数据科学家和工程师可以更便捷地进行数据分析和机器学习任务。在推荐系统中,Spark可用于执行协同过滤、基于内容的推荐或深度学习模型训练,以实现用户和商品之间的精准匹配。 推荐系统主要分为两大类:**基于内容的推荐** 和 **协同过滤推荐**。前者依赖于用户的历史行为和商品的属性,通过比较新商品与用户过去喜欢的商品之间的相似性来进行推荐。后者则是通过分析大量用户的行为模式,找出具有相似兴趣的用户群体,然后将某一群体中一部分人喜欢的但另一部分人还未发现的商品推荐给他们。 在这个电商大数据项目中,我们需要使用Hadoop的MapReduce对原始数据进行预处理,如清洗、转换和聚合。接着,将预处理后的数据导入Spark,利用Spark的DataFrame和Spark SQL进行数据探索和特征工程,构建用户和商品的画像。然后,可以运用Spark MLlib库中的协同过滤算法,或者使用TensorFlow、PyTorch等深度学习框架在Spark上构建神经网络模型,训练推荐模型。根据模型预测结果生成个性化推荐列表,并实时更新以适应用户行为的变化。 为了适应B2B(企业对企业)和B2C(企业对消费者)的不同场景,推荐系统需要考虑不同的推荐策略。B2B推荐可能更多地关注商品的兼容性、业务合作等因素,而B2C则侧重于用户个人喜好和购买历史。因此,在项目实施过程中,需要针对这两种情况设计不同的评价指标和优化目标。 基于Hadoop和Spark的个性化推荐系统项目涵盖了大数据处理、分布式计算、机器学习以及推荐系统等多个领域的知识。通过实践,我们可以深入了解这些技术在实际电商应用中的作用,同时提升解决复杂问题的能力。
2025-04-16 09:57:13 220B 人工智能 Hadoop
1
Offset Explorer (以前叫:kafka-Tool ):学名叫:偏移资源管理器,是一款kafka的可视化工具,可以查看kafka的topic ,partion数量,以及查看写入到kafa中的数据,整体页面非常简洁,使用起来也比较容易,他支持 mac ,windows,linux 服务器,非常推荐大家使用。
2025-01-16 12:16:19 60.24MB kafka kafka macos 消息队列
1
项目工程资源经过严格测试可直接运行成功且功能正常的情况才上传,可轻松copy复刻,拿到资料包后可轻松复现出一样的项目,本人系统开发经验充足(全栈开发),有任何使用问题欢迎随时与我联系,我会及时为您解惑,提供帮助 【资源内容】:项目具体内容可查看/点击本页面下方的*资源详情*,包含完整源码+工程文件+说明(若有)等。【若无VIP,此资源可私信获取】 【本人专注IT领域】:有任何使用问题欢迎随时与我联系,我会及时解答,第一时间为您提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 【适合场景】:相关项目设计中,皆可应用在项目开发、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面中 可借鉴此优质项目实现复刻,也可基于此项目来扩展开发出更多功能 #注 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担 2. 部分字体及插图等来自网络,若是侵权请联系删除,本人不对所涉及的版权问题或内容负法律责任。收取的费用仅用于整理和收集资料耗费时间的酬劳 3. 积分资源不提供使用问题指导/解答
2024-11-24 18:14:58 7.92MB
1
基于spark期末大作业等等项目代码.zip 基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等等项目代码.zip基于spark期末大作业等
2024-11-24 17:58:13 311.49MB spark
1
该项目是关于实时数据处理和可视化的综合应用,利用了大数据技术栈中的多个组件,包括Spark、Kafka、Flume、Echarts以及Hadoop。以下是这些技术在该项目中的具体作用和相关知识点: 1. **Spark**: Apache Spark是一个快速、通用且可扩展的大数据处理框架。在该项目中,Spark可能被用于实时数据流处理,对新闻和健身数据进行实时分析。Spark Streaming可以接收到Kafka中的数据流,并进行实时计算,如聚合、过滤或复杂事件检测,为业务决策提供及时的数据支持。 2. **Kafka**: Kafka是一款高吞吐量的分布式消息系统,常用于构建实时数据管道和流处理应用。在这个项目中,Kafka可能作为数据收集和分发的中心节点,接收来自不同源头(如新闻源、健身设备)的数据,并将其分发到Spark流处理作业或者存储到Hadoop等持久化系统中。 3. **Flume**: Flume是Apache的一个数据收集工具,用于高效、可靠地聚合和移动大量日志数据。在本项目中,Flume可能被用来从各种分散的源(如网络爬虫、服务器日志)收集新闻和健身数据,然后将这些数据发送到Kafka队列,以便进一步处理。 4. **Echarts**: Echarts是百度开源的一款基于JavaScript的数据可视化库,支持丰富的图表类型,如折线图、柱状图、饼图等。在这个项目中,Echarts可能用于将Spark处理后的数据结果以直观的图表形式展示出来,帮助用户更好地理解和分析新闻、健身数据的趋势和模式。 5. **Hadoop**: Hadoop是Apache的一个分布式文件系统,设计用于处理和存储大规模数据集。在这个项目中,Hadoop可能用于离线批处理,对历史数据进行深度分析,或者作为Spark处理后的数据备份和归档存储。 项目提供的文档和教程可能涵盖了如何设置和配置这些组件,如何编写Spark Streaming作业,如何使用Flume收集数据,如何在Kafka中设置主题和消费者,以及如何用Echarts创建交互式数据可视化。同时,它还可能涉及如何将所有这些组件整合到一个工作流程中,以实现端到端的实时数据处理和分析。 通过学习和实践这个项目,你可以深入理解大数据实时处理的工作流程,提升在大数据领域的能力,包括数据采集、流处理、数据分析和可视化等多个方面。对于想要从事大数据相关工作的专业人士,这是一个非常有价值的实践案例。
2024-11-14 07:43:50 161.31MB spark hadoop kafka kafka
1
《基于Spark的外卖大数据平台分析系统实现》 在当今信息化社会,大数据已成为企业决策的关键因素。尤其是在外卖行业中,海量的订单、用户行为、地理位置等数据蕴含着丰富的商业价值。本项目将详细介绍如何利用Apache Spark构建一个高效的数据分析系统,对外卖大数据进行深度挖掘,为业务优化和市场策略提供有力支持。 Apache Spark是大数据处理领域的一款强大工具,以其内存计算、高并发和易用性等特性,被广泛应用于实时和离线数据分析。在构建外卖大数据平台分析系统时,我们首先需要理解Spark的基本架构和核心组件。Spark的核心包括Spark Core、Spark SQL、Spark Streaming、MLlib(机器学习库)以及GraphX(图计算)。这些组件协同工作,可实现数据的存储、处理、查询和模型训练等多元化功能。 1. Spark Core:作为基础框架,负责任务调度、内存管理、集群通信等。它提供了弹性分布式数据集(Resilient Distributed Dataset, RDD),是Spark处理数据的基本单元,具备容错性和并行计算能力。 2. Spark SQL:结合了SQL查询和DataFrame/Dataset API,使得开发人员可以方便地在SQL和程序化API之间切换,处理结构化和半结构化数据。 3. Spark Streaming:用于实时数据流处理,通过微批处理方式实现低延迟的数据处理。对于外卖平台,这可以用于实时监控订单状态、用户行为等。 4. MLlib:Spark内置的机器学习库,提供多种算法,如分类、回归、聚类、协同过滤等,支持模型评估和调优,为外卖平台的个性化推荐、热点预测等提供可能。 5. GraphX:用于处理图数据,可以用来分析用户关系网络、商家关联等。 在搭建外卖大数据平台时,我们需要考虑以下几个关键步骤: 1. 数据采集:从各种来源(如订单系统、用户APP、第三方API等)收集数据,形成数据湖。 2. 数据预处理:清洗数据,处理缺失值、异常值,进行数据转换,使其适用于后续分析。 3. 数据存储:使用Hadoop HDFS或Spark原生的分布式文件系统(如Alluxio)存储大量数据。 4. 数据处理:使用Spark SQL进行数据查询和分析,Spark Streaming处理实时数据流,如实时订单跟踪。 5. 数据挖掘与建模:利用MLlib进行特征工程、模型训练和验证,如用户画像构建、需求预测等。 6. 结果可视化:通过Tableau、PowerBI等工具将分析结果以图表形式展示,便于决策者理解。 7. 系统优化:不断调整Spark配置,如分区策略、executor内存大小等,以提高性能和资源利用率。 基于Spark的外卖大数据平台分析系统能够高效处理海量数据,实现快速响应和深度洞察,从而助力外卖行业的精细化运营,提升用户体验,驱动业务增长。
2024-10-29 16:05:22 655KB spark 数据分析
1
(1)Python爬虫进行数据爬取; (2)搭建Hadoop分布式集群; (3)Hive数仓存储原始数据; (4)Spark整合Hive完成数据分析,结果存入MySQL; (5)Spring Boot+ECharts进行数据可视化。
2024-10-29 16:01:36 7.37MB hadoop spark 数据分析
1