LSTM (Long Short-Term Memory) 是一种特殊的循环神经网络(RNN)架构,用于处理具有长期依赖关系的序列数据。传统的RNN在处理长序列时往往会遇到梯度消失或梯度爆炸的问题,导致无法有效地捕捉长期依赖。LSTM通过引入门控机制(Gating Mechanism)和记忆单元(Memory Cell)来克服这些问题。 以下是LSTM的基本结构和主要组件: 记忆单元(Memory Cell):记忆单元是LSTM的核心,用于存储长期信息。它像一个传送带一样,在整个链上运行,只有一些小的线性交互。信息很容易地在其上保持不变。 输入门(Input Gate):输入门决定了哪些新的信息会被加入到记忆单元中。它由当前时刻的输入和上一时刻的隐藏状态共同决定。 遗忘门(Forget Gate):遗忘门决定了哪些信息会从记忆单元中被丢弃或遗忘。它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 输出门(Output Gate):输出门决定了哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。同样地,它也由当前时刻的输入和上一时刻的隐藏状态共同决定。 LSTM的计算过程可以大致描述为: 通过遗忘门决定从记忆单元中丢弃哪些信息。 通过输入门决定哪些新的信息会被加入到记忆单元中。 更新记忆单元的状态。 通过输出门决定哪些信息会从记忆单元中输出到当前时刻的隐藏状态中。 由于LSTM能够有效地处理长期依赖关系,它在许多序列建模任务中都取得了很好的效果,如语音识别、文本生成、机器翻译、时序预测等。
2025-11-30 00:48:24 71KB LSTM
1
CNN-LSTM-Attention基于卷积-长短期记忆神经网络结合注意力机制的数据分类预测 Matlab语言 程序已调试好,无需更改代码直接替换Excel即可运行 1.多特征输入,LSTM也可以换成GRU、BiLSTM,Matlab版本要在2020B及以上。 2.特点: [1]卷积神经网络 (CNN):捕捉数据中的局部模式和特征。 [2]长短期记忆网络 (LSTM):处理数据捕捉长期依赖关系。 [3]注意力机制:为模型提供了对关键信息的聚焦能力,从而提高预测的准确度。 3.直接替换Excel数据即可用,注释清晰,适合新手小白 4.附赠测试数据,输入格式如图3所示,可直接运行 5.仅包含模型代码 6.模型只是提供一个衡量数据集精度的方法,因此无法保证替换数据就一定得到您满意的结果
2024-09-12 10:58:49 171KB lstm 神经网络 matlab
1
使用getdata.py下载数据,或者使用自己的数据源,将数据放在stock_daily目录下 使用data_preprocess.py预处理数据,生成pkl文件,放在pkl_handle目录下(可选) 调整train.py和init.py中的参数,先使用predict..py训练模型,生成模型文件,再使用predict.py进行预测,生成预测结果或测试比照图 本项目使用机器学习方法解决了股票市场预测的问题。项目采用开源股票数据中心的上证000001号,中国平安股票(编号SZ_000001),使用更加适合进行长时间序列预测的LSTM(长短期记忆神经网络)进行训练,通过对训练集序列的训练,在测试集上预测开盘价,最终得到准确率为96%的LSTM股票预测模型,较为精准地实现解决了股票市场预测的问题
2024-06-07 15:00:05 4.9MB 神经网络 lstm 数据集
1
基于LSTM神经网络模型的日志异常检测 主要基于Deeplog实现 DeepLog - Anomaly Detection and Diagnosis from System Logs through Deep Learning (部分paper来源于知网,请尊重版权~)
2024-05-24 13:36:59 82.2MB Python
1
基于改进PSO-LSTM神经网络的气温预测.pdf
2024-05-13 10:49:10 1.18MB
1
本文主要对LSTM模型结构改进及优化其参数, 使其预测股票涨跌走势准确率明显提高, 同时对美股周数据及日数据在LSTM神经网络预测效果展开研究. 一方面通过分析对比两者预测效果差别, 验证不同数据集对预测效果的影响; 另一方面为LSTM股票预测研究提供数据集的选择建议, 以提高股票预测准确率. 本研究通过改进后的LSTM神经网络模型使用多序列股票预测方法来进行股票价格的涨跌趋势预测. 实验结果证实, 与日数据相比, 周数据的预测效果表现更优, 其中日数据的平均准确率为52.8%, 而周数据的平均准确率为58%, 使用周数据训练LSTM模型, 股票预测准确率更高.
1
Python实现LSTM长短期记忆神经网络时间序列预测(完整源码) Python实现LSTM长短期记忆神经网络时间序列预测(完整源码) Python实现LSTM长短期记忆神经网络时间序列预测(完整源码) Python实现LSTM长短期记忆神经网络时间序列预测(完整源码)
2024-04-04 09:49:24 255KB python lstm 神经网络
1
采用LSTM神经网络,基于时间线可以实现数据的预测,包括股票价格随时间的变化预测、多地天气的温湿度数据的预测。本资源已经跑通,用户替换掉数据集data.csv等文件即可,简单易上手。
2023-12-12 10:00:33 1.02MB lstm 神经网络 价格预测 预测算法
1
神经网络模型普遍存在过拟合问题,所以采用增加3层丢弃层避免梯度消失的问题,利用adam优化器自动优化学习率。 本文使用ReLu Activation函数激活参数特征,然后连接Batch Normalization层和Dropout层,再用Flatten层对数据进行平滑处理,最后将数据输入两个堆叠的LSTM层输出预测数据。 经过多次调整超参数后,确定丢弃率为0.15。 为该单特征LSTM模型的损失变化图。由图可见,该模型损失函数的下降速度极快,在训练次数达到三百次左右时,损失已经基本维持在0附近,并逐步趋于平稳,说明该模型能够很快地收敛到一个较优的参数状态,避免了过拟合或欠拟合的问题。该模型的整体MAPE最低时达到10.69%,整体的拟合程度较高。
2023-10-11 23:01:33 6KB lstm 神经网络
1
MATLAB代码,直接运行,可以换数据。
2023-04-26 22:49:40 980B matlab lstm 神经网络
1