### CMW500测试LTE手册 #### 一、序言 本应用文档旨在详细介绍如何使用罗德与施瓦茨(Rohde & Schwarz)公司的CMW500无线通信测试仪来进行LTE(Long Term Evolution)终端的射频性能测试。依据3GPP TS36.521-1规范,CMW500能够执行所有必需的测试项目,以评估FDD(频分双工)和TDD(时分双工)模式下LTE终端的发射机和接收机性能。 #### 二、CMW500配置与使用 ##### 2.1 如何使用CMW配置文件 - **创建配置文件**:在进行特定测试前,需根据所需的测试场景和参数创建相应的配置文件。这些文件通常包含预设的信号设置、频率范围、功率水平等关键参数。 - **调用配置文件**:通过CMW500的用户界面或外部自动化软件(如CMWRun),可以轻松加载先前保存的配置文件,以便快速开始测试流程。 ##### 2.2 选择双工模式 - **FDD与TDD的区别**:FDD采用不同频率进行上行和下行传输;而TDD在同一频率上交替进行上行和下行传输。 - **选择模式**:在CMW500的设置菜单中选择合适的双工模式,确保所选模式与被测LTE终端匹配。 #### 三、发射机测试 根据3GPP TS36.521-1规范,发射机测试主要包括以下方面: ##### 3.1 最大输出功率 - **定义**:测试LTE终端在规定条件下的最大输出功率。 - **测试方法**:按照TS36.521-1,6.2.2的规定执行测试,确保测试结果符合标准要求。 ##### 3.2 最大功率降低 - **目的**:评估终端在不同功率级别下的性能表现。 - **测试方法**:依据TS36.521-1,6.2.3的标准进行测试。 ##### 3.3 额外最大功率降低 - **定义**:进一步测试在极端条件下的功率输出稳定性。 - **测试方法**:根据TS36.521-1,6.2.4的规定进行测试。 ##### 3.4 配置终端输出功率 - **目的**:验证终端能否在指定功率水平下稳定工作。 - **测试方法**:遵循TS36.521,6.2.5的要求执行测试。 ##### 3.5 最小输出功率 - **定义**:评估终端最低输出功率的性能。 - **测试方法**:根据TS36.521,6.3.2的规定进行测试。 ##### 3.6 关断功率 - **定义**:测量终端在非激活状态下的功率消耗。 - **测试方法**:依据TS36.521,6.3.3进行测试。 ##### 3.7 发射/关断时间模板 - **定义**:测试终端在发射和关断期间的时间一致性。 - **测试方法**:按照TS36.521-1,6.3.4.1的规定执行测试。 ##### 3.8 PRACH与SRS时间模板 - **定义**:评估物理随机接入信道(PRACH)和探测参考信号(SRS)的时间特性。 - **测试方法**:依据TS36.521-1,6.3.4.2的规定进行测试。 ##### 3.9 功率控制 - **绝对功率控制容限**:验证终端是否能够在规定的功率范围内准确调整其输出功率。 - **相对功率控制容限**:测试终端相对于参考信号的功率控制能力。 - **集合功率控制**:评估多个信号同时传输时的功率控制性能。 ##### 3.10 频率误差 - **定义**:测试终端的实际发射频率与其指定频率之间的偏差。 - **测试方法**:依据TS36.521,6.5.1的规定进行测试。 ##### 3.11 误差矢量幅度(EVM) - **定义**:评估信号质量的一种指标,用于衡量实际发射信号与理想信号之间的差异。 - **测试方法**:按照TS36.521-1,6.5.2.1的规定执行测试。 ##### 3.12 PUSCH跳变周期EVM - **定义**:专门用于评估物理上行链路共享信道(PUSCH)在跳变周期内的EVM性能。 - **测试方法**:根据TS36.521-1,6.5.2.1A的规定执行测试。 ##### 3.13 载波泄漏 - **定义**:评估信号能量泄露到中心频率附近的程度。 - **测试方法**:依据TS36.521-1,6.5.2.2的规定进行测试。 ##### 3.14 未分配资源块带内杂散 - **定义**:测量未使用的资源块内部存在的不期望信号。 - **测试方法**:根据TS36.521-1,6.5.2.3的规定执行测试。 ##### 3.15 EVM均衡器频谱平坦度 - **定义**:评估经过均衡处理后的信号频谱平坦度。 - **测试方法**:遵循TS36.521,6.5.2.4的规定进行测试。 ##### 3.16 占用带宽 - **定义**:测量信号的能量分布情况,以确定有效带宽。 - **测试方法**:根据TS36.521,6.6.1的规定执行测试。 ##### 3.17 频谱发射模板 - **定义**:评估信号在整个频率范围内的功率分布,确保信号不超出规定的带宽。 - **测试方法**:依据TS36.521,6.6.2.1的规定执行测试。 ##### 3.18 邻信道泄漏比 - **定义**:衡量信号泄露到相邻信道的程度。 - **测试方法**:根据TS36.521,6.6.2.3的规定执行测试。 #### 四、接收机测试 接收机测试涵盖了以下几个方面: ##### 4.1 参考灵敏度 - **定义**:测试终端在最低信号强度下仍能正确解码数据的能力。 - **测试方法**:依据TS36.521-1,7.3的规定执行测试。 ##### 4.2 最大输入电平 - **定义**:评估终端能够承受的最大输入信号强度而不发生损坏或性能下降的能力。 - **测试方法**:根据TS36.521-1,7.4的规定执行测试。 ##### 4.3 邻信道选择性 - **定义**:测试终端抑制来自邻近信道干扰信号的能力。 - **测试方法**:依据TS36.521-1,7.5的规定执行测试。 ##### 4.4 带内阻塞 - **定义**:评估终端在存在带内干扰信号的情况下正常工作的能力。 - **测试方法**:根据TS36.521-1,7.6.1的规定执行测试。 ##### 4.5 窄带阻塞 - **定义**:测试终端在存在窄带干扰信号的情况下正常工作的能力。 - **测试方法**:依据TS36.521-1,7.6.3的规定执行测试。 #### 五、结论 通过本应用文档提供的指导,用户可以详细了解如何使用CMW500综测仪来执行各种LTE终端的射频性能测试。从发射机到接收机的各项测试均严格按照3GPP TS36.521-1规范执行,确保了测试结果的准确性和可靠性。此外,CMW500还支持多种自动化测试工具,如CMWRun,极大地提高了测试效率。对于那些需要复杂测试环境的项目(例如传导杂散、发射机互调和带外阻塞测试),用户可以通过查阅R&S®CMW500的能力列表来获取所需额外仪表和射频器件的信息,从而确保所有测试项目的顺利完成。
2025-10-11 14:37:18 6.2MB CMW500 LTE 
1
《LTE物理层协议》是3GPP组织发布的一份详细的技术文档,主要针对4G通信系统中的LTE(Long Term Evolution)技术。这份资料是通信工程人员、研发人员以及对4G通讯感兴趣的学者的重要参考资料。LTE作为移动通信领域的关键标准,其物理层(Physical Layer)的设计与实现对于网络性能至关重要。 在LTE系统中,物理层是无线接入网络的底层,负责数据传输的基础工作,包括信道编码、调制、多址接入以及射频处理等关键任务。物理层协议的内容广泛,主要包括以下几个方面: 1. **物理信道与信号**:LTE物理层定义了多种物理信道,如下行的PDSCH(Physical Downlink Shared Channel)用于承载用户数据,PDCCH(Physical Downlink Control Channel)用于传输调度信息。同时,还有同步信号如PBCH(Physical Broadcast Channel)和PSS/SSS(Primary/Secondary Synchronization Signal)用于终端设备的网络搜索和时间同步。 2. **信道编码与调制**:为了提高传输效率和抗干扰能力,LTE采用了Turbo编码和低密度奇偶校验码(LDPC)进行信道编码,并使用QPSK、16QAM、64QAM等不同的调制方式,根据信道条件动态调整,以达到最优的传输性能。 3. **多址接入**:LTE采用了OFDMA(Orthogonal Frequency Division Multiple Access)作为下行多址接入方式,SC-FDMA(Single-Carrier Frequency Division Multiple Access)用于上行。这些技术通过在频域内分配资源块,允许多个用户在同一时隙内并行传输,提高了频谱利用率。 4. **物理层过程**:物理层还包括随机接入过程、初始信道估计、功率控制、HARQ(Hybrid Automatic Repeat reQuest)错误纠正机制等。这些过程确保了数据的可靠传输和系统的有效运行。 5. **资源分配**:在LTE中,物理资源块(PRB)是基本的调度单位,包含了时间和频率资源。下行调度由eNodeB决定,上行调度则需要终端设备通过竞争或非竞争的方式请求。 6. **射频特性**:物理层还涉及射频相关的参数,如载波带宽、子载波间隔、发射功率控制等,这些都直接影响到通信的覆盖范围和质量。 7. **MIMO技术**:多输入多输出(MIMO)是LTE提升数据速率的关键技术之一。通过利用空间分集和空间复用,MIMO可以显著提高链路的容量和可靠性。 《LTE物理层协议》详细阐述了以上这些内容,对理解LTE网络的工作原理和技术细节具有极高的价值。无论是从事系统设计、网络优化还是故障排查,此文档都能提供重要的理论支持和实践指导。因此,对于4G通讯行业的专业人士来说,深入研读并理解这份资料是非常必要的。
2025-09-23 12:58:14 2.37MB LTE
1
**3GPP LTE(长期演进)物理层(PHY)是移动通信系统的核心部分,它定义了无线接口的底层操作,包括数据传输、错误检测和纠正、资源分配以及与高层的交互。以下是对36.211-v860、36.212-v860、36.213-v860和36.214-v860这些协议的详细解析:** **1. 36.211-v860:帧结构和信道复用** 此文档详细阐述了LTE系统的时频结构,包括基本的时间单位、帧结构、子帧和时隙。LTE采用OFDM(正交频分复用)作为其下行链路的基础调制方式,而上行链路则采用DFT-s-OFDM(离散傅立叶变换-同步OFDM)。它还规定了PSS(主同步信号)、SSS(辅同步信号)和PBCH(物理广播信道)的配置,用于设备的同步和小区搜索。此外,36.211-v860还涵盖了PUSCH(物理上行共享信道)、PDSCH(物理下行共享信道)、PUCCH(物理上行控制信道)和PDCCH(物理下行控制信道)等信道的定义和复用方法。 **2. 36.212-v860:编码和速率匹配** 这个部分详细描述了编码技术,包括Turbo编码、卷积编码和CRC(循环冗余校验),用于提高数据传输的可靠性。LTE系统采用了混合自动重传请求(HARQ)机制,结合前向纠错编码,实现高效的数据错误修复。速率匹配是将编码后的数据流调整到符合物理信道带宽需求的过程,通常涉及比特插入或删除。此外,还包括了调制方式如QPSK、16-QAM和64-QAM的详细信息,它们决定了数据在频谱上的表示方式。 **3. 36.213-v860:实现流程** 此规范涵盖了物理层的处理流程,包括信道估计、预编码、功率控制和多天线技术(如MIMO,多输入多输出)。它还涉及到上行和下行链路的调度过程,如何根据网络状况和用户需求分配资源块。同时,36.213-v860详细描述了物理层的解码过程,以及HARQ的实现,包括重传策略和合并方式。 **4. 36.214-v860:测量** 这部分主要关注网络性能监控和优化,包括UE(用户设备)对邻近小区的测量,如RSSI(接收信号强度指示)、RSRP(参考信号接收功率)、RSRQ(参考信号接收质量)等参数。这些测量结果用于小区选择、重选和切换决策,以确保UE始终连接到最佳的通信小区。此外,还包括了干扰管理和资源管理相关的测量规定。 这些3GPP协议文档构成了LTE物理层的核心,为理解LTE系统的工作原理、设计和优化提供了基础。通过对这些协议的深入学习,可以更好地掌握LTE网络的运行机制,对于网络规划、设备开发和故障排查具有重要意义。
2025-09-16 22:44:11 7.75MB lte
1
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-09-05 10:13:46 3.59MB matlab
1
打开 OpenLTE是3GPP LTE规范的开源实现。 这是的副本。 内容 获取软件(PySIM,PCSCd,Pyscard) 编程SIM卡 新增订阅者 测试捕获 攻击实施 @onkarmumbrekar实施的某些攻击可以在不同的分支中找到: akabypass attach_reject dos_tau_reject_dualcase dos_tau_reject malformed_detach numb_attack service_reject_on_tau tau_numb_attack 先决条件 USB 3.0接口 现代多核CPU(Intel Core i5,Core i7或具有SSE4.1 SSE4.2和AVX支持的同等产品) 已安装UHD驱动程序(用于Ettus SDR) 古纳拉迪奥 安装 设定您的电脑 OpenLTE不仅需要大量的处理能力
2025-08-07 13:20:21 4.57MB lte gnuradio usrp
1
本期带来PSS相关检测说明和MATLAB实现,本期只讲相关方面的,所以MATLAB实现也是相关的部分,频偏估计方面的待下期开讲。 LTE 4G PSS搜索分为TDD搜索和FDD搜索,但是对于 TDD 和 FDD 而言,PSS同步信号的结构是完全一样的,但在帧中的时域位置有所不同. 对于 FDD 而言,PSS 在子帧 0 和 5 的第一个 slot 的最后一个 OFDM 符号上发送. 对于 TDD 而言,PSS 在子帧 1 和 6 的第三个 OFDM 符号上发送,即TDD的PSS都是 LTE PSS主同步信号搜索是LTE 4G通信技术中的一个重要环节,它主要负责小区搜索、帧定时和频偏估计等功能。PSS(主同步信号)在LTE系统中用于实现时间同步和小区身份识别,它是小区搜索过程中的第一个步骤,PSS同步信号的结构对TDD(时分双工)和FDD(频分双工)来说是一样的,但是它们在帧中的时域位置不同。PSS在FDD模式下位于子帧0和5的第一个slot的最后一个OFDM符号上发送,在TDD模式下位于子帧1和6的第三个OFDM符号上发送,TDD的PSS总是在特殊子帧上发送。 PSS的生成公式涉及到Zadoff-Chu(ZC)序列,这种序列的特点是在频域上具有恒幅特性和优良的互相关特性,由小区的物理层小区ID(NID2)生成。PSS在频域上占据62个子载波(SC),包括左右各5个子载波的保护带共占据72个SC,正好是6个资源块(RB),占据中心带宽为1.08MHz。LTE PSS搜索在时间域上的分布决定了最好使用互相关算法寻找相关峰。在接收信号与本地生成的序列做相关操作时,可以得到定时同步和频偏信息。 为了提高检测准确性,通常采用分段相关法来降低频偏对PSS搜索的影响。分段相关法通过将接收到的信号分成K段,每段长度为L,然后分别进行相关运算,并将所有分段的相关功率累加求和,从而减小频偏的影响,提高系统对噪声的抗干扰能力。实际应用中,分段数量K的取值一般为2或4。 在MATLAB中实现LTE PSS搜索主要包括以下几个步骤:初始化变量、信号生成、进行相关搜索。初始化必要的参数和变量,如采样率、子载波数、FFT点数等。接下来,生成本地的ZC序列并构建参考信号。然后,将接收到的信号与本地生成的序列进行相关运算,检测出PSS的相关峰。根据相关峰的位置进行小区搜索,并得出帧定时和频偏估计。 LTE PSS主同步信号搜索的过程和MATLAB实现是复杂的,涉及到了信号处理、时间序列分析和频偏估计等关键技术。这些技术在确保无线通信系统的同步性能和数据传输可靠性方面发挥着重要作用。随着无线通信技术的发展,对PSS搜索技术的研究也在不断深化,以适应更高速率、更低延迟和更高频谱效率的通信需求。
2025-07-23 11:26:20 102KB matlab LTE 小区搜索
1
本文为LTE PSS详细讲解,PSS作为LTE UE终端入网第一个检测的信道,通过它能够获得哪些有用信息,PSS时频域位置的映射,PSS的生成过程,MATLAB实现,带你完全了解LTE主同步信号。
2025-07-23 11:25:56 162KB matlab LTE
1
LTE通信系统中,UE要想完成初始的小区搜索,在检测完PSS之后要检测SSS,因为PSS完成后只获得了5ms定时和NID2,大家都知道完整的PCI是由NID1和NID2组成的,而NID1的信息在SSS中,本文为您带来最精彩的LTE 辅同步信号SSS的讲解,让您从原理,实现选型,公式生成,性能介绍,MATLAB实现等一体化为您介绍,让你对LTE SSS大彻大悟
2025-07-23 11:25:02 260KB matlab LTE
1
1、对即将获得工信部拍照4G网络TD-LTE技术进行全面阐述; 2、中国移动、中国电信等运营商大力建造网络的设备系统技术、特别是对干扰进行独到、有序、专业的定位与分析; 3、是业内人士不可多得的精华材料 TD-LTE网络干扰故障排除是移动通信领域的一项关键技术。由于TD-LTE(Time-Division Long Term Evolution)是一种采用时分双工(TDD)模式的长期演进技术,其与其他通信系统共存时,可能会面临频率干扰的问题,因此需要专业的方法进行排查和规避。以下是从给定文件信息中提取的知识点: 1. TD-LTE技术全面阐述: TD-LTE是第四代移动通信技术(4G)的一部分,相比于FDD-LTE(频分双工长期演进技术),它在频谱使用上更加灵活,支持非对称上下行传输,即上行和下行链路可使用不同的频率时隙。这种特性使得TD-LTE能够更好地适应不同国家和地区的频率规划。但这也意味着在设计和运行TD-LTE网络时,需要对干扰问题进行详细的考虑和管理。 2. 干扰产生的原因及分类: 在TD-LTE系统中,干扰通常可以分为系统内干扰和系统间干扰。系统内干扰主要指网络内部不同信道或扇区间的干扰;系统间干扰则是指来自其他通信系统的干扰,如GSM、CDMA、WLAN等。干扰的产生原因可以是多种多样的,包括设备老化、系统配置不当、外部电磁环境复杂等。 3. 系统间干扰的具体分析: 根据文件,TD-LTE系统的干扰主要可以从F频段、E频段、D频段等不同频段来分析。例如,在F频段中可能会遇到DCS1800带外阻塞干扰、DCS1800带外杂散干扰、TD-LTE基站与WLANAP间的互干扰等。对各种干扰的原因、分类和影响范围进行详细分析,是进行干扰故障排除的基础。 4. 干扰排查方法: 文件中提到了多种干扰排查方法,如全网干扰快速筛查、单站干扰精确定位等。这些方法涉及从宏观的角度对整个网络进行分析,到具体站点的细节问题诊断。排查时,需要考虑网络的物理布局、设备配置、信号传播特性等因素。 5. 干扰规避方案: 为了有效地规避干扰,必须设计具体的解决方案,如频率调整、软件功能优化、滤波器的加装、天线的更换和天面布局调整等。例如,通过频率调整可以避免频段内的互相干扰;优化软件功能可以在不改变硬件的情况下提高系统抗干扰能力;加装滤波器可以有效阻挡带外干扰信号。 6. 后续规避方法指导意见: 干扰排除并非一次性的任务,需要不断地进行监控和调整。文件中也提到了后续规避方法的指导意见,这涉及持续地对网络性能进行评估和优化,以适应日益变化的电磁环境和通信需求。 通过上述内容的分析,我们可以了解TD-LTE网络干扰故障排除的工作流程和所需技能。这套流程对于移动通信运营商而言,可以有效地提高网络质量,降低干扰风险,最终确保为用户提供更稳定、更高速的移动通信服务。对于通信行业的从业者来说,掌握这些知识点对于维护和优化TD-LTE网络至关重要。
2025-07-09 15:38:28 2.61MB 4G、LTE
1
LTE干扰专项排查指导书TD-LTE网络干扰分内部干扰和外部干扰,内部干扰主要包括:GPS失步、超远覆盖、参数异常,外部干扰主要包括:其他制式网络(GSM、DCS、FDD-LTE、PHS等)干扰、屏蔽器干扰等。目前中移动LTE网络使用F、D、E频段,各频段常见干扰情况不同, 《LTE干扰专项排查指导》是针对TD-LTE网络在运行过程中遇到的干扰问题提供的一份详细排查手册。干扰主要分为内部干扰和外部干扰两大类。内部干扰主要包括GPS失步、超远覆盖导致的干扰以及参数异常引发的问题。外部干扰则涉及其他通信制式的网络(如GSM、DCS、FDD-LTE、PHS等)、屏蔽器以及各种电子设备产生的干扰。 F频段(1880~1920MHz)的干扰主要包括GSM900、GSM1800、PHS系统以及外部电子设备带来的阻塞、二阶互调、谐波和杂散干扰。D频段(2570~2620MHz)面临GSM900/GSM1800的阻塞干扰,800M Tetra系统和CDMA800MHz的三阶互调干扰,以及来自其他电子设备的外部干扰。E频段(2320~2370MHz)的干扰源则包括GSM900/GSM1800的阻塞、WLAN AP的杂散和阻塞干扰,以及外部电子设备的干扰。 干扰排查流程通常遵循一定的步骤,首先了解各运营商的频段使用情况,然后通过扫频图形和频段使用图来辅助定位干扰源。例如,WLAN工作在2.4-2.4835GHz和5.15-8.825GHz频段,而不同的干扰类型会有特定的频域和时域特征,这有助于识别和定位问题。 系统内的干扰,如远距离同频干扰,通常发生在非主城区的空旷地带,晴朗夜晚尤为明显,影响全频段,尤其是RB 47-52。解决方法包括降低高站高度,调整下倾角和方位角,或增加特殊子帧的保护间隔。GPS失步造成的干扰体现在RB7、RB48-51及RB92的明显抬升,解决方式包括远程复位GPS,必要时需上站检查。数据配置错误可能导致小范围干扰,表现为半帧周期性的RS时域周期,需要定期核查全网配置数据。 系统间的干扰主要包括杂散干扰和互调干扰。杂散干扰由非线性器件产生的辐射信号落入受害系统的接收频段,表现为频域上的不对称干扰,解决措施包括提高天线隔离度或安装滤波器。互调干扰则表现为底噪的高低起伏,强度与干扰源小区的话务量有关,可能需要调整系统配置以减轻干扰。 通过理解这些干扰类型和排查流程,网络优化人员可以更有效地定位并解决问题,确保TD-LTE网络的稳定性和服务质量。
2025-07-09 15:27:16 8.12MB 干扰排查
1