内容概要:本文详细介绍了如何利用动态规划(Dynamic Programming, DP)在MATLAB/SIMULINK环境中实现自动驾驶车辆的动态避障功能。首先,文章解释了动态规划的核心思想及其在路径规划中的应用,特别是通过状态转移方程来解决避障问题。接着,讨论了运动学模型(如自行车模型)的建立方法,以及如何通过PID和MPC控制算法进行路径跟踪和避障。此外,文章还探讨了联合仿真平台(MATLAB + Carsim + Prescan)的搭建和配置,展示了如何将理论转化为实际的仿真效果。最后,提供了完整的代码实现和调试技巧,帮助读者快速上手并优化性能。 适合人群:对自动驾驶技术和路径规划感兴趣的科研人员、工程师和技术爱好者。 使用场景及目标:适用于研究和开发自动驾驶系统,特别是在复杂环境下实现高效的动态避障功能。目标是提高车辆的安全性和智能化水平,减少人为干预。 其他说明:文中提供的代码已在GitHub上开源,读者可以直接下载并运行。需要注意的是,某些高级功能(如深度强化学习)将在后续版本中继续探索。
2025-05-04 07:13:33 315KB
1
标题中的“PolSAR影像的I&Q分量的统计分析”涉及到的是极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)图像处理领域的一个重要概念。PolSAR技术通过捕获目标物体不同极化状态的回波信号,提供丰富的地表信息,广泛应用于地球观测、环境监测、自然灾害预警等领域。I和Q分量是极化数据的基本组成部分,代表了雷达回波的两个正交极化通道。 在PolSAR影像中,I(In-phase)和Q(Quadrature)分量是复数信号在实数坐标系下的表示,它们反映了雷达脉冲的相位差。I分量对应于相位为0度的情况,Q分量对应于90度。通过分析这两个分量,可以获取目标的极化特性,如极化散射矩阵、极化特征向量等。 描述中提到的“生成POlSAR图像中同相和正交相位分量之间相关性的散点图”,这是在进行极化相关性分析。这种分析有助于理解地物的极化行为,散点图可以直观展示I与Q分量之间的关系,揭示地表目标的极化特性变化。通常,这种相关性分析可以通过计算皮尔逊相关系数或者绘制二维直方图来实现。 “Kullback Leiber Divergence (KLD) 值”是一种衡量概率分布差异的非对称度量,也被称作相对熵。在本场景中,KLD被用于评估I和Q分量分布之间的差异。KLD值越小,表示两个分布越接近;越大,则表明分布差异显著。在PolSAR图像处理中,通过计算I和Q分量的KLD值,可以识别地物的极化变化,进一步帮助分类或目标识别。 标签“matlab”表明这些分析是使用MATLAB软件进行的。MATLAB是科学计算的强大工具,拥有丰富的图像处理和统计分析库,适合进行复杂的PolSAR数据分析。在实际操作中,可能需要用到如`scatter`函数创建散点图,`kldiv`函数计算KLD值等MATLAB命令。 在压缩包中的文件“SLC%20IQ%20Correlation.zip”可能包含MATLAB代码、原始PolSAR数据、以及分析结果等,使用者可以通过解压并运行这些代码来复现或扩展上述的统计分析过程。通过这种方式,研究者可以深入理解和探索PolSAR影像中的极化特性,提高遥感数据的解释能力。
2025-05-03 21:44:35 18.25MB matlab
1
毕业设计做的东西,希望对大家有帮助,包括滤波,二值化等等
2025-05-03 19:26:34 803B 图像预处理
1
Curvelet Matlab工具箱2.0_CurveLab-2.1.3 CurveLab is a toolbox implementing the Fast Discrete Curvelet Transform, both in Matlab and C++. The latest version is 2.1.3.
2025-05-03 19:01:24 892KB Curvelet Matlab 图像处理 图像增强
1
RTKLIB是一款开源的全球导航卫星系统(GNSS)软件工具包,由Hiroshi Hiranuma教授开发,广泛应用于GNSS数据处理、实时定位、动态定位和精密单点定位等多个领域。本压缩包文件“rtkilb_singlepos_rtklib”主要关注的是RTKLIB在MATLAB环境下的单点定位功能。 单点定位是GNSS接收机最基本的定位方法,它通过解算来自多个卫星的观测数据来确定地面接收机的位置。在单频单点定位中,接收机仅使用一个频率的信号进行定位,这种方法通常适用于精度要求较低的场合,如车载导航、户外运动等。而这个压缩包提供的MATLAB版本使得用户可以在MATLAB环境中实现单点定位的计算,这对于教学、研究或者快速原型验证非常有帮助。 主程序“rtklib—singlepos”是实现单点定位的核心代码。这个程序可能包含了以下关键步骤: 1. **数据预处理**:读取O文件(观测数据)和N文件(导航数据)。O文件包含了接收机接收到的卫星信号的伪距或相位观测值,N文件则包含卫星的轨道和钟差信息。 2. **电离层延迟校正**:单频接收机无法直接测量电离层延迟,因此需要利用模型进行估算和校正。程序可能内置了Klobuchar模型或其他电离层模型。 3. **对流层延迟校正**:同样,也需要考虑大气对流层的影响,一般使用气象参数进行校正。 4. **坐标转换**:将观测值从卫星坐标系转换到地心坐标系,这通常涉及地球椭球参数的使用。 5. **几何距离解算**:基于卫星的已知位置和观测值,计算接收机的三维位置。这通常采用非线性最小二乘法进行迭代优化。 6. **误差处理**:包括钟差校正、多路径效应消除等,以提高定位精度。 7. **结果输出**:最终计算出的接收机坐标和其他相关信息会被输出,供用户分析。 在MATLAB环境中运行这个程序,用户可以方便地调整算法参数,进行各种假设和试验,同时利用MATLAB强大的可视化功能来直观地展示定位结果。这对于研究不同环境条件下的定位性能,或者进行定位算法的优化都具有很大的便利性。 “rtkilb_singlepos_rtklib”提供了在MATLAB环境中实现RTKLIB单点定位功能的工具,对于学习和研究GNSS定位技术的人来说是一个宝贵的资源。通过理解和应用这些代码,用户不仅可以深入理解单点定位的基本原理,还能掌握如何在实际项目中运用这些技术。
2025-05-03 14:17:27 3.35MB rtklib
1
Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-05-03 14:16:25 3.46MB matlab
1
内容概要:本文详细介绍了如何利用MATLAB进行机械臂的空间直线和圆弧轨迹规划。首先讨论了直线轨迹规划的方法,包括使用ctraj函数生成笛卡尔空间插值路径以及自定义插值方法确保关节角度变化的连续性。接着探讨了圆弧轨迹规划,提出了通过三点确定圆弧路径并使用三次样条插值提高路径平滑度的方法。文中还强调了逆运动学的应用及其重要性,特别是在处理关节角度变化不连续的问题时。此外,文章提到了一些实用技巧,如时间戳对齐、路径点加密、避免奇异点等,并提供了具体的MATLAB代码示例。 适合人群:从事机器人研究或开发的技术人员,尤其是那些希望深入了解机械臂轨迹规划原理和实现细节的人群。 使用场景及目标:适用于需要精确控制机械臂运动的研究和工程项目,旨在帮助开发者掌握如何使用MATLAB高效地完成机械臂的轨迹规划任务,从而实现更加流畅和平稳的动作执行。 其他说明:文中不仅提供了理论解释和技术指导,还包括了许多实践经验分享,有助于读者更好地理解和应对实际操作中可能遇到的各种挑战。
2025-05-03 13:53:38 134KB MATLAB Robotics Toolbox
1
人工智能 基于MATLAB实现传统图像去噪算法(均值滤波、中值滤波、非局部均值滤波NLM、三维块匹配滤波BM3D)和基于深度卷积神经网络的DnCNN图像去噪算法。 五种算法都是对Set12数据集进行去噪,去噪的结果并没有保存,只是在运行过程中能看到去噪前和去噪后的图像对比,感兴趣的朋友可以自己将图像保存下来观察。 随着数字图像处理技术的迅猛发展,图像去噪成为了一个热门的研究领域。在众多图像去噪算法中,传统算法因其简单、直观、易于实现而得到广泛应用。然而,随着深度学习技术的兴起,基于深度卷积神经网络的去噪算法开始崭露头角,尤其在处理含有复杂噪声的图像时显示出更大的优势。本篇文章将深入探讨基于MATLAB实现的传统图像去噪算法以及基于深度卷积神经网络的DnCNN图像去噪算法,并在Set12数据集上进行对比实验。 传统图像去噪算法主要包括均值滤波、中值滤波、非局部均值滤波(NLM)以及三维块匹配滤波(BM3D)。这些算法各有其特点和应用场景。 均值滤波是一种简单有效的线性滤波器,它通过将图像中每个像素点的值替换为其邻域内像素点值的平均数来实现去噪。这种方法适用于去除高斯噪声,但会模糊图像细节,因为它是基于局部像素平均信息来进行去噪的。 中值滤波是一种非线性滤波技术,它将每个像素点的值替换为其邻域内像素点值的中位数。中值滤波在去除椒盐噪声方面效果显著,因为它不受个别噪声点的影响,但在处理含有大量细节的图像时可能会损失部分细节信息。 非局部均值滤波(NLM)是一种基于图像块相似性的去噪算法,它利用图像中的冗余信息,通过寻找图像中与当前处理块相似的其他块的加权平均来完成去噪。NLM算法在去除噪声的同时能较好地保持图像边缘和细节,但计算量较大,处理速度较慢。 三维块匹配滤波(BM3D)是一种先进的图像去噪算法,通过分组相似的图像块,利用三维变换去除噪声。BM3D算法通过两次协同过滤实现高效的图像去噪,其性能往往优于其他传统算法,尤其是在处理较为复杂的噪声时。 然而,传统图像去噪算法在处理含有大量噪声或需要高度去噪保留图像细节的场景时,往往效果有限。随着深度学习技术的出现,基于深度卷积神经网络的图像去噪算法成为研究的热点。深度学习算法能够从大量带噪声的图像中自动学习到有效的特征表示,并用于去噪任务。 在本篇文章中,作者实现了基于深度卷积神经网络的DnCNN图像去噪算法,并在Set12数据集上进行了测试。DnCNN是一种端到端的深度神经网络结构,它通过逐层学习图像中的噪声模式,可以有效地从带噪声的图像中去除噪声,同时保持图像的清晰度和边缘细节。DnCNN算法在处理高斯噪声、泊松噪声以及混合噪声等方面都表现出色,是目前图像去噪领域的一个重要突破。 Set12数据集包含了多种类型的带噪声图像,包括自然场景、动物、植物等,非常适合用于测试不同去噪算法的性能。在实验中,作者并未保存去噪后的结果,而是提供了运行过程中的去噪前和去噪后的图像对比,使得读者可以在实验中直观地观察到算法效果。 通过在Set12数据集上对五种算法进行测试,我们可以观察到不同算法对于不同类型噪声的处理能力。传统算法在去除简单噪声时效果尚可,但在细节保持和复杂噪声处理方面往往不尽人意。而基于深度学习的DnCNN算法在这些方面表现更为出色,即便是在噪声水平较高的情况下也能保持较高的图像质量。 传统图像去噪算法和基于深度卷积神经网络的DnCNN图像去噪算法各有千秋,前者简单易实现,后者性能卓越。在实际应用中,可以根据具体需求选择合适的去噪方法。随着深度学习技术的不断进步,未来一定会有更多高效、鲁棒的去噪算法被开发出来,以满足人们对于高质量图像的需求。
2025-05-03 12:02:37 79.92MB MATLAB 图像去噪 去噪算法 深度学习
1
基于SLMP算法的MATLAB水下传感器网络定位仿真研究——参考IEEE Transactions文章的可扩展移动预测定位技术,【6】MATLAB仿真 水下传感器网络定位,SLMP算法,有参考文档。 主要参考文档: 1. Scalable Localization with Mobility Prediction for Underwater Sensor Networks,IEEE Transactions on Mobile Computing 主要供文档方法的学习 非全文复现。 ,MATLAB仿真;水下传感器网络定位;SLMP算法;参考文档;可扩展性定位;移动预测。,MATLAB仿真:水下传感器网络定位的SLMP算法研究
2025-05-03 11:04:35 878KB
1
在IT领域,尤其是在航天、导航或天文计算中,精确地测量和预测天体的位置是至关重要的。本项目涉及的主题是“matlab开发-月球方位角测量算法”,它旨在使用MATLAB编程语言来预测月球相对于地球某一特定地理位置的方位角(Azimuth)和高度(Elevation)。MATLAB是一种强大的数值计算和数据分析工具,因其易读性和丰富的科学计算库而被广泛应用于工程和科学研究中。 月球方位角是月球在地平坐标系中的水平方向角度,从正北方向开始测量,向东为正,向西为负。高度则是月球中心相对于地平线的垂直角度,向上为正,向下为负。这个算法需要输入UTC(协调世界时)以及观测点的经纬度,然后计算出对应的月球位置。 在描述中提到,该算法能够确保预测结果在+-2度的精度范围内。这意味着算法经过了优化,能够在计算过程中考虑到各种因素,如地球自转、公转、月球轨道偏心率、月球自转等,以提供高度准确的结果。 "license.txt"可能包含软件的许可协议,这通常是开源项目或者商业软件的重要组成部分,它规定了用户如何使用、分发和修改代码的法律条款。 "LunarAzEl.m"是MATLAB源代码文件,很可能包含了实现月球方位角和高度计算的核心算法。代码可能会包括以下几个步骤: 1. **时间处理**:将UTC时间转换为天文日期和时间,以便进行天文学计算。 2. **坐标转换**:将地理坐标(经度、纬度)转换为天文坐标系。 3. **月球位置计算**:利用天文历表数据或理论模型,计算出月球相对于地球的精确位置。 4. **地平坐标系转换**:将月球的赤道坐标转换为观测点的地平坐标,即方位角和高度。 5. **误差修正**:可能包括大气折射、地球曲率等因素的修正,以提高计算精度。 在实际应用中,这样的算法可以用于天文爱好者追踪月球位置,或者在卫星通信、导航系统中校准天线指向。通过理解并分析"LunarAzEl.m"的代码,我们可以学习到MATLAB在天文学计算中的应用,以及如何处理时间和空间坐标转换问题,这些都是在科学计算和工程实践中非常有价值的技能。
2025-05-03 00:39:18 4KB
1