声源定位算法及代码实现:基于STM32F4的高精度声源定位技术与Matlab仿真,声源定位原理算法与STM32F4实现源码:高精度定位与Matlab仿真,2022声源定位相关资料及代码 内附声源定位算法基本原理及matlab仿真原理及实现方法; stm32f4实现源码(2022电赛) 3米处水平横向精度0.013m(可优化更低)。 视频5s,无快进,mcu为stm32f429zit6。 ,2022声源定位; 声源定位算法; MATLAB仿真; STM32F4实现源码; 精度0.013m; 视频5s; MCU STM32F429ZIT6,2022声源定位技术:原理、实现及STM32F4源代码详解
2025-09-12 22:28:05 507KB
1
在雷达信号处理领域,数据生成是基础且关键的环节,它为算法设计和系统性能评估提供了重要依据。本压缩包中的代码采用MATLAB语言编写,用于生成雷达信号分选的仿真数据。MATLAB是一种广泛应用于数值计算、符号计算和科学工程图形绘制的编程环境。 雷达信号分选是指将接收到的复杂混合信号按照特定标准进行分类和识别,其目的是区分不同的目标或信号类型。在雷达系统中,多个目标回波可能同时存在,因此对这些回波进行有效分选对于提升雷达系统的探测能力和抗干扰能力极为重要。 这段MATLAB代码的核心功能是生成仿真数据,主要涵盖以下方面:一是信号模型构建,代码可能包含FMCW、脉冲压缩、多普勒频移等多种雷达信号模型,用于模拟不同类型的发射信号及其在传播过程中的变化;二是目标参数设定,在生成数据时会设置目标的距离、速度、角度等参数,以反映真实雷达系统可能遇到的目标条件;三是噪声添加,为使仿真更接近实际,代码可能包含添加热噪声、干扰噪声等环节,以评估分选算法在噪声环境下的性能;四是信号处理,数据生成后可能包含匹配滤波、FFT等预处理步骤,以提取信号特征,为后续分选做准备;五是分选算法实现,代码可能实现多门限法、谱峰检测法、基于聚类等分选算法,用于从混杂信号中分离出各个目标;六是结果验证与分析,代码可能包含对分选结果的评估和可视化,通过与设定的目标参数对比,检验分选算法的准确性和有效性。 由于该代码已通过测试并能正常运行,用户可以直接运行它,观察生成的仿真数据,并以此为基础开发自己的雷达信号分选算法。对于从事雷达信号处理学习和研究的人员而言,这份代码资源极为宝贵。它不仅能帮助人们深入理解雷达信号分选原理,还能通过实际操作提升编程和问题解决能力。这份“雷达信号分选仿真数据生成代码”是一个实用的教学和研究工具,有助于深入学习雷达信号处理技术,尤其是信号建模、分选算法实现以及MATLAB环境中的应用。通过学
2025-09-10 16:31:32 56KB 雷达信号处理 MATLAB仿真
1
基于改进A*算法的多AGV路径规划及MATLAB仿真,解决冲突问题,输出路径和时空图,基于改进A*算法的多AGV路径规划在MATLAB仿真程序中的时间窗口规划和冲突避免:基于上下左右4个方向规划路径,输出路径图和时空图,基于改进A*算法的多AGV路径规划,MATLAB仿真程序,时间窗口规划,传统是8个方向,可以斜着规划路径,改进为上下左右4个方向,仿真避开冲突问题 ,输出路径图,时空图。 ,核心关键词:改进A*算法; 多AGV路径规划; MATLAB仿真程序; 时间窗口规划; 斜向路径规划; 上下左右方向规划; 避冲突; 输出路径图; 时空图。,改进A*算法下的四向AGV路径规划:MATLAB仿真时空优化避冲突路径图
2025-09-09 20:22:45 1.02MB 柔性数组
1
内容概要:本文介绍了一种基于改进A*算法的多AGV路径规划方法及其MATLAB仿真。传统的A*算法允许八个方向的移动,而改进后的版本仅限于四个方向(上下左右),从而降低了规划时间和复杂度。此外,引入了时间窗口管理机制来避免AGV之间的冲突,确保路径规划的安全性和效率。仿真结果显示,在20x20的地图上运行五个AGV时,改进算法实现了零碰撞。文中详细展示了改进后的邻居生成代码、成本计算方式以及冲突检测函数的具体实现,并提供了路径图和时空图的可视化展示。 适合人群:对自动化物流系统、机器人导航、路径规划感兴趣的科研人员和技术开发者。 使用场景及目标:适用于需要高效、安全地进行多AGV路径规划的实际应用场景,如仓库管理和工业生产流水线。主要目标是减少路径规划的时间消耗,提高AGV的工作效率,避免车辆间的碰撞。 其他说明:作者提到MATLAB的全局变量在并行计算时可能存在不稳定的情况,建议将时间窗映射改为对象属性。未来计划探讨使用粒子群优化进一步提升路径规划的效果。
2025-09-09 20:22:24 479KB
1
基于改进A*算法与DWA融合策略的机器人路径规划仿真研究:全局规划与局部避障的综合性能分析,基于改进A*算法融合DWA算法的机器人路径规划MATLAB仿真程序(含注释) 包含传统A*算法与改进A*算法性能对比?改进A*算法融合DWA算法规避未知障碍物仿真。 改进A*算法做全局路径规划,融合动态窗口算法DWA做局部路径规划既可规避动态障碍物,又可与障碍物保持一定距离。 任意设置起点与终点,未知动态障碍物与未知静态障碍物。 地图可更改,可自行设置多种尺寸地图进行对比,包含单个算法的仿真结果及角速度线速度姿态位角的变化曲线,仿真图片丰富 ,改进A*算法; DWA算法; 路径规划; 未知障碍物; MATLAB仿真程序; 性能对比; 地图设置; 角速度线速度姿态位角变化曲线,基于MATLAB仿真的机器人路径规划程序:改进A*算法与DWA融合优化对比
2025-09-09 09:28:38 2.9MB paas
1
基于改进A*算法融合DWA算法的机器人路径规划MATLAB仿真程序(含注释) 包含传统A*算法与改进A*算法性能对比?改进A*算法融合DWA算法规避未知障碍物仿真。 改进A*算法做全局路径规划,融合动态窗口算法DWA做局部路径规划既可规避动态障碍物,又可与障碍物保持一定距离。 任意设置起点与终点,未知动态障碍物与未知静态障碍物。 地图可更改,可自行设置多种尺寸地图进行对比,包含单个算法的仿真结果及角速度线速度姿态位角的变化曲线,仿真图片丰富 在现代机器人技术与自动化领域中,路径规划作为核心问题之一,对于实现机器人安全、高效地从起点移动到终点具有重要意义。路径规划算法的优劣直接关系到机器人的性能表现和应用范围。本文介绍了一种基于改进A*算法与动态窗口法(DWA)融合的路径规划方法,并提供了一套MATLAB仿真程序。 A*算法是目前较为广泛应用的路径规划算法,尤其适用于有明确静态环境地图的情况。它能够保证找到从起点到终点的最优路径。然而,传统的A*算法在面对动态障碍物时存在不足,因为它并未考虑环境的实时变化。为了弥补这一缺陷,本文提出了改进的A*算法。改进的部分主要在于动态障碍物的实时检测与路径规避策略,使其能够应对环境变化,确保路径的安全性和有效性。 在融合了DWA算法后,改进A*算法能够更好地处理局部路径规划问题。DWA算法是一种用于局部路径规划的算法,它能够为机器人提供实时避障能力,特别是在面对动态障碍物时。通过将DWA算法与改进A*算法相结合,不仅可以实现全局的最优路径规划,还能够在局部路径中实时调整路径,避免与动态障碍物的碰撞,同时保持与障碍物的安全距离。 在仿真程序中,用户可以自定义起点和终点位置,并设置地图的尺寸和障碍物的分布。仿真程序能够输出一系列仿真结果,包括角速度、线速度、姿态和位角的变化曲线图,以及机器人在路径规划过程中产生的各种动态行为的可视化图片。这些结果有助于研究者和工程师分析和评估算法性能,进一步优化算法参数,提高路径规划的效果。 通过对比传统A*算法与改进A*算法的仿真结果,可以明显看出改进算法在处理动态障碍物时的优势。改进算法不仅能够保持路径的全局最优性,还能有效处理局部的动态变化,使得机器人能够更加灵活、安全地移动。 本文提出的基于改进A*算法融合DWA算法的机器人路径规划方法,不仅适用于静态环境,还能够应对动态环境的变化。该方法的MATLAB仿真程序能够为机器人路径规划的研究和应用提供有力的工具,有助于推动相关技术的发展和创新。
2025-09-08 22:43:54 2.9MB matlab
1
毫米波雷达多普勒估计是现代雷达系统中的关键技术之一,特别是在自动驾驶、无人机导航、目标识别等领域有着广泛应用。本文将深入探讨毫米波雷达的工作原理、多普勒效应以及在Matlab环境下的仿真方法。 毫米波雷达使用的是频率在毫米级别的电磁波,通常在30至300GHz之间。这一频段的电磁波具有穿透力强、分辨率高、体积小等优点,适合在复杂的环境中进行精确的目标探测和跟踪。 多普勒效应是雷达系统中用于计算目标相对速度的关键概念。当雷达发射的电磁波遇到移动目标时,反射回来的信号频率会发生变化,这种频率变化就是多普勒效应。根据多普勒频移,我们可以推算出目标相对于雷达的接近或远离速度。 在Matlab中实现毫米波雷达的多普勒估计,通常包括以下几个步骤: 1. **信号模型建立**:首先需要构建雷达发射和接收的信号模型,包括脉冲序列、调制方式(如线性调频连续波LFMCW)等。 2. **多普勒处理**:通过快速傅里叶变换(FFT)对回波信号进行处理,以提取多普勒频移。这一步骤通常涉及窗函数的选择和匹配滤波器的应用,以提高信噪比和频率分辨率。 3. **速度估计**:从多普勒频谱中找出峰值,对应的就是目标的速度。可能需要进行多普勒平滑或者动态门限检测来抑制噪声和虚假目标。 4. **角度估计**:结合多径传播和天线阵列的特性,可以实现角度估计算法,如基于波达方向(DOA)的方法,例如音乐算法(MUSIC)或根最小方差(Root-MUSIC)。 5. **仿真验证**:通过与理论值对比,评估算法的性能,如速度估计精度、角度分辨率等。 在"Doppler-radar-simulation-model-master"这个压缩包中,可能包含了上述各个步骤的Matlab代码,包括信号生成、多普勒处理、速度和角度估计的函数或脚本。通过分析和运行这些代码,我们可以更深入地理解毫米波雷达的多普勒估计原理,并可对算法进行优化和改进。 毫米波雷达多普勒估计是雷达系统中的核心部分,它涉及到信号处理、数字通信等多个领域。通过Matlab仿真,不仅可以直观地了解其工作过程,也能为实际硬件设计提供重要的参考。在学习和研究过程中,我们需要对雷达原理、多普勒效应、以及Matlab编程有扎实的基础,以便更好地理解和应用这些知识。
2025-09-06 17:18:41 26KB matlab 毫米波雷达 角度估计 速度测量
1
以下是一段关于合成孔径雷达经典成像算法CS(压缩感知)的MATLAB仿真代码,代码内容完整且注释详细。此代码无需验证,可以直接使用。代码结构简洁明了,易于理解。希望这份代码能够对有需要的朋友们提供帮助。 合成孔径雷达成像技术是一种利用雷达波对地球表面进行高分辨率成像的技术。它通过合成多个天线接收数据的方式,生成一个虚拟的大孔径天线,从而提高成像的分辨率。CS(压缩感知)算法是一种信号处理技术,它可以在信号采样率远低于奈奎斯特采样率的情况下,通过利用信号的稀疏性,从少量的采样数据中精确地重构出原始信号。将CS算法应用于合成孔径雷达成像,可以显著提高成像速度和降低数据处理的复杂度。 MATLAB是一种高性能的数值计算和可视化软件,广泛应用于工程计算、控制设计、信号处理和通信等领域。MATLAB仿真代码是一种在MATLAB软件环境下运行的程序代码,它可以模拟合成孔径雷达的工作过程,帮助研究人员和工程师验证算法的正确性和性能。 在本文档中提供的MATLAB仿真代码,是基于CS算法的合成孔径雷达成像的实现。代码的主要内容包括了算法的具体实现步骤,以及必要的注释,帮助理解代码的设计思想和实现细节。通过这些代码,用户可以快速搭建起一个合成孔径雷达成像的仿真平台,并进行算法的验证和性能评估。 此外,压缩感知算法的应用不仅限于合成孔径雷达成像,它在图像处理、无线通信、地震数据处理等多个领域都有广泛的应用前景。使用MATLAB进行仿真可以快速验证算法的可行性,为进一步的实际应用和算法优化提供依据。 本仿真代码对于研究CS算法在合成孔径雷达成像领域的应用具有重要的参考价值,尤其对于那些希望在该领域深入研究的技术人员来说,是一份宝贵的资源。通过这些仿真代码,他们可以更加深入地理解算法的原理和实现过程,从而在实际工程应用中更好地解决遇到的问题。
2025-09-03 01:06:17 56KB MATLAB仿真代码
1
合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种利用雷达波进行远程成像的技术,它通过在飞行过程中不断发射和接收雷达信号来模拟一个大口径天线的效果,从而实现高分辨率的地面成像。这个压缩包提供的是一套完整的CS(Compressive Sensing,压缩感知)算法在MATLAB环境下的仿真代码,由作者精心整理,包含详尽的注释,可以直接运行使用。 CS理论是近年来在信号处理领域中的一项突破性进展,它允许在低于奈奎斯特定理所要求的采样率下重构信号,这对于数据量庞大的SAR成像尤其有优势。在SAR系统中,由于数据采集和处理的复杂性,CS可以显著减少数据存储和传输的需求,提高系统的效率。 在MATLAB中,这套代码可能包括了以下关键部分: 1. **数据生成**:这部分代码可能涉及创建SAR回波模型,包括目标场景、雷达脉冲序列以及相应的散射特性。通常会使用随机分布的点目标或更复杂的图像纹理来模拟实际的地形。 2. **压缩采样**:这部分实现了CS的核心思想,即非均匀随机采样。通过设计合适的测量矩阵,将原始信号映射到低维空间,从而降低采样需求。 3. **信号恢复**:使用优化算法(如梯度下降法、坐标下降法或者正则化方法如L1最小化)来恢复原始信号。这些算法试图找到一个信号,使得其经过测量矩阵变换后的结果与采样值最接近,同时满足信号的稀疏性约束。 4. **成像处理**:利用逆合成孔径雷达(ISAR)或者聚焦算法(如FMCW SAR或FFT-based SAR)将恢复的信号转换为图像。这些算法会考虑平台运动、多普勒效应等因素,确保图像的清晰度。 5. **性能评估**:可能包含了图像质量指标,如信噪比(SNR)、均方误差(MSE)等,用于评估重建图像的质量和算法的性能。 6. **可视化**:代码中可能包含了将原始图像、采样图像和恢复图像进行对比展示的部分,方便用户直观理解CS在SAR成像中的效果。 使用这套代码,研究人员或学生可以深入理解CS在SAR成像中的应用,进行算法的比较和优化,甚至开发新的压缩感知算法。同时,对于初学者,通过阅读和运行代码,可以快速掌握SAR成像的基本原理和CS理论。 这个压缩包为SAR成像技术的学习和研究提供了一套实用的工具,无论是在学术研究还是工程实践中,都能发挥重要的作用。代码的易读性和完整性使得用户能够快速上手,节省了大量自己编写和调试代码的时间,有助于更专注于问题本身的研究。
2025-09-03 00:51:30 6KB MATLAB
1
100A有源电力滤波器(APF)在MATLAB V2011环境下的仿真模型,主要探讨了全阶补偿和选阶补偿模式下的LCL滤波器I型三电平拓扑仿真。文中涵盖了谐波检测方法、重复控制算法、直流电压和中点电位控制等方面的技术细节。谐波检测采用了软件锁相环(SPLL)和FFT分解技术,能够精确提取基波并进行不同模式的谐波补偿。重复控制算法通过累积历史误差信息来提高补偿精度,而直流电压和中点电位则分别通过双闭环控制和SPWM调制中的零序分量注入来保持稳定。最终,仿真结果显示全补偿模式将THD从25%降至3.2%,选阶模式降至4.8%,同时减少了40%的开关损耗。 适合人群:从事电力电子、电力系统谐波治理的研究人员和技术人员,以及对MATLAB仿真感兴趣的工程技术人员。 使用场景及目标:适用于需要理解和掌握有源电力滤波器(APF)的工作原理及其仿真的场合,特别是在谐波治理方面寻求优化解决方案的专业人士。目标是帮助读者深入了解APF的设计和实现,提升实际应用中的性能。 其他说明:本文提供了详细的代码片段和注释,方便读者进行进一步的学习和移植应用。特别强调了在实际应用中需要注意的关键参数设置和调试技巧。
2025-08-28 11:34:16 886KB
1