光学薄膜技术广泛应用于多种领域,包括光通信、光学仪器制造、激光技术等,它通过在介质表面制备一层或多层具有特定折射率和厚度的薄膜,以改变入射光的传输特性。MATLAB和GNU Octave作为强大的数学计算和工程仿真软件,提供了丰富的工具和函数,为光学薄膜分析与设计提供了便利。 在这些工具箱中,用户可以找到大量现成的函数和脚本,它们能够帮助工程师和研究人员完成光学薄膜的性能计算、薄膜层的厚度优化以及膜系的设计。这些工具箱通常包括基本的光学薄膜计算功能,如计算多层膜系的透射率、反射率,分析膜系的光学特性,以及借助遗传算法、模拟退火等优化算法来寻找最佳的膜层厚度组合,以达到预期的光学性能。 MATLAB和GNU Octave的光学薄膜工具箱不仅支持设计单一膜层,还支持设计复杂的多层膜系统。用户可以根据自己的需求,选择不同的设计方法和优化策略。例如,一些工具箱提供了用于增强抗反射、增透、滤光或反射等功能的膜层设计模块。此外,为了实现膜系的高精度控制和质量评估,某些工具箱还集成了膜层生长模型和膜层损伤分析,为实验和生产提供了理论支撑。 这些工具箱在方便用户进行复杂计算的同时,还提供了友好的图形用户界面。用户可以通过界面上的菜单和按钮,直观地进行设计输入、参数调整、计算过程控制和结果展示。这些图形界面大大降低了光学薄膜分析的难度,使得即使是初学者也能在较短的时间内掌握基本的设计方法和操作流程。 对于高级用户而言,MATLAB和Octave的光学薄膜工具箱还允许他们通过编程接口自定义脚本,以实现特定的设计需求。例如,可以通过编写自定义的算法来模拟不同的膜层材料和结构,分析其对光学特性的影响。在仿真和分析过程中,用户还可以利用这些工具箱内嵌的数学和统计功能,进行更深入的数据处理和结果分析。 除了计算和仿真功能,这些工具箱也往往包含大量的教学示例和案例分析,帮助用户理解光学薄膜设计中的基本概念和复杂问题。这对于光学工程教育和科研人员来说,是一个非常宝贵的学习资源。通过这些实例,学习者可以更好地理解理论与实际应用之间的联系,提高解决实际问题的能力。 此外,随着光电子技术的快速发展,新的光学薄膜材料和应用需求不断涌现,这些工具箱也在不断地更新和完善。开发者不断地将最新的研究成果和技术创新集成到工具箱中,以满足科研和工业界不断变化的需求。这使得工具箱不仅是光学薄膜分析和设计的重要工具,也成为了推动该领域技术进步和创新的重要平台。 随着科学技术的不断进步,MATLAB和GNU Octave的光学薄膜工具箱在未来的光学薄膜分析和设计中扮演的角色将越来越重要。工具箱的持续优化和升级,将为光学薄膜技术的应用和研究提供更加强大的支持,推动相关科学领域的进一步发展。
2025-09-10 11:26:21 331KB
1
目前光学薄膜设计大多为单目标寻优设计,难以满足一些复杂光学薄膜的需求。构建出光学薄膜的多目标优化膜系,设计一种新型、高效的多目标遗传算法(DMOGA)用于模型的求解。该算法使用基于支配关系的选择策略、基于动态聚集距离削减非支配解集规模、动态调整算法运行参数等策略使得DMOGA不仅容易实现,而且能得到较好分布性和逼近性的解。将DMOGA应用于光学薄膜的优化设计实例中,取得良好的效果,表明了多目标优化在光学薄膜设计中的有效性以及应用前景。
2025-08-02 18:27:05 1.72MB 优化设计 遗传算法 thin
1
大角度倾斜入射时,光学薄膜表现出强烈的偏振效应。这一现象在大部分应用场合会带来系统光学性能的劣变,然而控制偏振效应的光学薄膜设计是困难的。分析了产生偏振效应的内在原因,采用由三种全介质材料构成的四层膜堆和等效层结构膜堆组合得到初始膜系,结合单纯形法和共轭梯度法的多级优化,设计了1300~1330nm和1535~1565nm两个波段范围内分光比都为1∶1的近红外双波段消偏振分光膜。结果显示,在45°入射时,在两个工作波段的s分量和p分量的反射率曲线偏振分离小,反射和透射引起的相位变化也控制在很小范围。
2025-05-22 13:29:42 2.62MB 近红外; thin
1
杰微THIN H81 ITX bios文件 原机备份来的 用编程器刷
2025-04-28 17:15:54 8MB BIOS
1
在当今科学技术领域,偶氮类聚合物因其在非线性光学领域的特殊应用而备受关注。这篇论文详细描述了使用旋转甩膜法制备主客体掺杂型偶氮类聚合物薄膜的过程,并对薄膜全光极化特性进行了深入研究。以下是对文中知识点的详细说明: 旋转甩膜法是一种常见的薄膜制备技术。通过将含有聚合物及其它活性染料的溶液滴加到旋转的基底上,溶剂迅速蒸发,溶液在基底上形成均匀的薄膜。这种方法能够控制薄膜的厚度以及表面形态,是科研工作中常用的薄膜制备手段。 偶氮染料是一种具有偶氮键(-N=N-)的有机化合物,由于其结构特征,偶氮染料在光照或电场的作用下能够发生顺反异构现象,从而改变材料的物理性质,使其在光存储、光学开关、非线性光学材料等领域有着重要的应用价值。 在论文中,被选作光学活性生色团的染料包括分散红1(DR1)、分散橙25(DO25)、分散黄7(DY7)和分散红54(DR54),这些染料被掺杂到聚合物基体中。基体材料选择了聚甲基丙烯酸甲酯(PMMA)和聚碳酸酯(PC),这是因为这两种聚合物具有良好的透明性和热稳定性,适合用于非线性光学材料的制备。 论文中提到的工艺条件对偶氮类聚合物薄膜的全光极化特性有显著影响,特别是热处理、染料浓度、吸收光谱和结构等因素。这些条件决定了薄膜中染料分子的排列状态,从而影响到材料的非线性光学响应。例如,实验发现染料浓度较高的薄膜在光照作用下能够产生更强的二阶非线性效应,这与染料分子的空间排布密度有关。 为了分析样品的特性,作者利用了扫描电镜(SEM)、X射线衍射(XRD)、差示扫描量热计(DSC)、红外光谱法(IR)、紫外-可见吸收光谱以及显微硬度仪等技术。这些分析方法能够从不同的角度对薄膜的表面形态、晶体结构、玻璃化转变温度、化学结构、光学吸收特性以及机械硬度等方面进行研究,从而全面评估材料的性能。 全光极化是指在光照下对材料进行极化的过程,通过这种处理,可以在聚合物薄膜中产生稳定的二阶非线性光学效应。这种效应通常与材料的二阶极化率有关,是一种重要的光学特性。在本研究中,作者发现通过普通热处理后的聚合物薄膜,在避光条件下保存时,能够产生明显的全光极化效果。这表明,制备工艺参数对偶氮类聚合物薄膜的全光极化特性有着直接影响。 本篇论文详细介绍了如何利用旋转甩膜法制备主客体掺杂型偶氮类聚合物薄膜,并且研究了这些薄膜在全光极化下的二阶非线性效应。这不仅丰富了非线性光学材料的研究内容,也为今后在相关领域应用提供了新的实验依据和理论指导。
2025-01-11 15:35:10 565KB 首发论文
1
应用等离子体增强化学气相淀积(PECVD)法制备SiO2薄膜, 并用折射率来表征致密性。研究了SiO2薄膜致密性与射频(RF)功率、基板温度、腔内压强、N2O/SiH4流量比的关系。通过Filmetrics薄膜测厚仪F20测量了薄膜的折射率, 用聚焦离子束扫描电镜(FIB-SEM)测量了表面微结构。利用能量弥散X射线(EDX)分析薄膜中Si、O、N元素含量随工艺参数变化对致密性的影响。进行多因子实验设计(DOE), 得出了各种条件下最优的折射率与结构的生长条件, 并研究了SiO2薄膜致密性随工艺条件变化的机理。
2023-11-15 10:45:04 6.05MB 等离子体 SiO2 thin
1
opencv函数实现二值图像边缘细化操作
2023-03-02 16:52:28 620KB thin
1
Rock thin sections identification based on improved squeeze-and
2022-11-12 09:31:42 11.16MB 深度学习 卷积神经网络 岩石图像
1
Enterprise “Thin” vs. Retail “Thick [教程]
2022-06-19 14:06:25 1.02MB 文档资料
有限元分析技术有时选用弯曲三角形有限元模型。 该模型的主要问题是单元几何边界条件的单元形状函数的连续性。 Adini 选择了第一个三角形弯曲单元形状函数; w(x,y)=[1 xyx**2 y**2 x**3 x**2*yx*y**2 y**3] 并且他忽略了“x*y”多项式参数。 尽管如此,有限元总共有九个自由度和形状函数十个参数的帕斯卡三角形描述。 有趣的是,Tocher 并没有忽略形状函数“x*y”项,他收集了统一弯曲参数“(x**2*y+x*y**2)”。 本区域第二个问题确定分析系统路径测试。 Adini 模型具有符合一维弯曲分析的补丁测试,但不符合二维分析。 Tocher 模型具有不合格的一维和二维弯曲分析。 有趣的有的分析是Sap2000(结构分析程序)做了一个补丁测试错误,这个错误非常大。 这个主要问题的三角板分析有解决方案 Bazely-Cheung-Irons-Z
2022-05-18 15:43:12 455KB matlab
1