备注:其中调用的行情引擎已经到到期,运行DkKb.exe时会提示连接引擎失败。但可以参考其中的看盘思路以及指标编写技巧。 内存占用有点多。本意是想打造一个快速对股市行情进行监控、筛选的工具,所以把接收到的行情数据都存放在内存中,以期达到最大的运行速度。
2025-10-28 22:46:23 21.31MB 源码 delphi7
1
# 基于ESP8266和ESP32的SimHub WiFi仪表盘系统 ## 项目简介 此项目是一个基于ESP8266和ESP32的SimHub WiFi仪表盘系统。其主要功能是通过WiFi与SimHub软件进行通信,以在自定义硬件仪表板上显示赛车模拟器的实时数据,如速度、转速、燃料、温度等。该项目支持ESP8266和ESP32两种芯片平台,提供了灵活的硬件配置和强大的功能。 ## 项目的主要特性和功能 1. WiFi通信: 通过WiFi与SimHub软件建立连接,实现实时数据交换。 2. 硬件支持: 支持多种硬件组件,如OLED屏幕、旋转编码器、按钮矩阵和RGB LED等。 3. 串行通信: 通过串行通信接收和发送数据。 4. 仪表板状态更新: 实时显示速度、转速、燃料、温度等模拟赛车数据。 5. 旋转编码器控制: 通过旋转编码器进行功能控制。 6. 按钮控制: 通过按钮进行菜单导航和设置更改。 7. RGB LED控制: 用于显示各种颜色或动画。
2025-10-26 20:25:22 584KB
1
在Windows Forms(Winform)应用开发中,有时候我们需要获取硬盘的详细信息,比如磁盘的总容量、已用空间和剩余空间等。本教程将详细解释如何使用C#语言实现这个功能。 我们需要导入必要的命名空间,这包括`System.IO`和`System.Windows.Forms`。`System.IO`提供了对文件系统进行操作的功能,而`System.Windows.Forms`则包含了用于创建图形用户界面的类。 ```csharp using System; using System.IO; using System.Windows.Forms; ``` 接下来,我们定义一个方法来获取硬盘的盘符信息。在这个方法中,我们将遍历所有的逻辑驱动器,并为每个驱动器收集其基本信息: ```csharp private void GetDiskInfo() { DriveInfo[] drives = DriveInfo.GetDrives(); foreach (DriveInfo drive in drives) { if (drive.IsReady) { // 获取并显示磁盘的总空间 long totalSpace = drive.TotalSize; MessageBox.Show($"磁盘 {drive.Name} 的总空间为:{totalSpace / 1024 / 1024 / 1024} GB"); // 获取并显示磁盘的可用空间 long freeSpace = drive.TotalFreeSpace; MessageBox.Show($"磁盘 {drive.Name} 的剩余空间为:{freeSpace / 1024 / 1024 / 1024} GB"); } } } ``` 在这个代码段中,`DriveInfo.GetDrives()`返回所有可用的驱动器信息。然后,我们通过`IsReady`属性判断驱动器是否已就绪,如果是,我们就获取其`TotalSize`(总空间)和`TotalFreeSpace`(剩余空间)。为了便于理解,我们将其转换成GB单位并使用`MessageBox.Show`展示给用户。 为了在Winform应用中使用这个功能,你可以在按钮的点击事件中调用`GetDiskInfo`方法,或者在程序启动时自动执行: ```csharp private void button1_Click(object sender, EventArgs e) { GetDiskInfo(); } ``` 或者 ```csharp private void Form1_Load(object sender, EventArgs e) { GetDiskInfo(); } ``` 此外,如果你有一个名为`DiskInfoGet`的项目或源代码文件,它可能包含了一个完整的示例,演示了如何在Winform应用程序中集成这个功能。这个项目或文件可以作为学习和参考,帮助你理解和实现硬盘空间查询的功能。 通过C#的`System.IO.DriveInfo`类,我们可以轻松地获取Windows系统中硬盘的总空间、剩余空间等信息,并结合Winform构建用户友好的界面来展示这些数据。这个过程涉及了文件系统操作、对象遍历以及数据转换等多个编程概念,对于理解和提升C#编程技能非常有帮助。
2025-10-25 14:37:52 53KB Winform
1
STM32是一款基于ARM Cortex-M内核的微控制器,由意法半导体(STMicroelectronics)生产。在本项目中,开发者使用了STM32并结合HAL(Hardware Abstraction Layer,硬件抽象层)库来实现模拟SPI(Serial Peripheral Interface)通信,以控制TF(TransFlash,也称为MicroSD)卡,并通过模拟USB Mass Storage Class(MSC)协议,使TF卡在计算机上表现为一个U盘设备,从而实现文件的读写。 我们来看看STM32与HAL库的运用。HAL库是ST公司提供的一种高级编程接口,它屏蔽了底层硬件的具体细节,使得开发者可以更专注于应用程序的逻辑,而无需深入了解底层硬件的工作方式。在这个项目中,HAL库被用来配置和操作STM32的GPIO(General Purpose Input/Output)引脚,以及SPI外设,简化了代码编写过程。 接下来,关于模拟SPI。SPI是一种同步串行通信协议,通常用于微控制器与外部设备之间的数据交换。在没有硬件SPI接口的情况下,开发者可以通过编程的方式,利用GPIO引脚模拟SPI协议中的SCK(时钟)、MISO(主设备输入,从设备输出)、MOSI(主设备输出,从设备输入)和CS(片选)信号,从而控制TF卡。在STM32中,这需要精确地控制时钟信号和其他信号的电平变化,以确保正确传输和接收数据。 然后,模拟USB MSC。USB MSC是USB规范的一部分,定义了如何通过USB接口模拟一个大容量存储设备,例如U盘。在STM32上实现这个功能,需要编写固件来模拟USB协议栈,包括枚举、命令处理和数据传输等。TF卡通过SPI接口连接到STM32后,固件会将TF卡上的数据组织成符合USB MSC规范的块设备,使得计算机能够识别并访问这个模拟的U盘。 在项目中,开发者可能使用了STM32CubeMX配置工具生成了初始的项目框架,如STM32L475VE.ioc文件所示,这是STM32CubeMX的配置文件,包含了对MCU的外设配置信息。.mxproject文件是Keil MDK的项目文件,用于编译和调试程序。 Drivers、Src、Inc目录分别存放驱动程序、源代码和头文件。MDK-ARM目录则包含的是使用MDK(RealView Microcontroller Development Kit)编译器的工程文件和设置。 这个项目展示了STM32在嵌入式系统中的强大功能,通过软件层面的创新实现了SPI通信和USB MSC协议的模拟,极大地扩展了STM32的应用场景,使得开发者可以构建自己的移动存储解决方案。这对于学习和实践STM32的开发者来说,是一个非常有价值的参考案例。
2025-10-23 21:15:45 39.37MB stm32
1
在当今的嵌入式系统开发领域,STM32微控制器因其高性能、低成本和丰富的硬件资源而广泛应用于各个行业。随着存储设备的普及和技术的进步,STM32微控制器与外部存储设备如U盘的交互也变得尤为重要。本文将详细介绍如何利用STM32 HAL库以及FatFS文件系统实现Host MSC(Mass Storage Class)模式,从而读写外部U盘。 我们需要了解Mass Storage Class(MSC)的概念。MSC是一种USB设备类,用于将USB接口的设备模拟成一个存储设备,例如硬盘、闪存盘、光盘驱动器等。这样,当STM32工作在Host模式时,它可以控制并读写外部U盘中的数据。 接下来,我们将重点介绍如何使用STM32 HAL库来实现这一功能。STM32 HAL库是ST公司推出的一套硬件抽象层库,它为开发者提供了一系列的API函数,可以方便地进行硬件配置和控制。在这个过程中,我们不需要深入了解硬件的细节,HAL库已经为我们封装好了相应的操作。 在实现Host MSC模式之前,我们还需要借助FatFS文件系统。FatFS是由ChaN开发的通用文件系统模块,它是完全独立于操作系统的,专门用于小型嵌入式系统中。FatFS支持FAT12、FAT16和FAT32文件系统,能够访问大容量的存储设备。 具体到本项目的实现,开发者需要完成以下几个关键步骤: 1. 初始化USB Host。在STM32的HAL库中,USB Host的初始化包括设置USB设备为Host模式,并配置相关的USB硬件参数。 2. 实现MSC类驱动。开发者需要使用HAL库提供的USB Host类驱动接口来实现MSC类驱动,该驱动将负责与外部U盘进行通信,并处理MSC类特定的请求。 3. 配置FatFS文件系统。在STM32上实现FatFS文件系统主要涉及初始化文件系统、设置工作目录、挂载文件系统以及注册写入、读取等操作的回调函数。 4. 实现文件操作接口。通过配置好的FatFS文件系统,开发者可以进行文件的创建、打开、读取、写入、删除等操作。 5. 设备检测和热插拔处理。在USB设备使用过程中,经常会有热插拔的情况发生,因此需要检测设备状态,确保系统能够正确识别和处理外部U盘的插入和移除。 实现上述功能后,STM32就可以作为一个USB Host,控制连接的外部U盘,并通过FatFS文件系统实现数据的读写操作。这对于需要大量数据存储和交换的嵌入式设备来说,是一个非常有用的功能。 通过STM32 HAL库以及FatFS文件系统实现Host MSC模式,可以使得STM32微控制器具备强大的外部存储设备交互能力。这不仅提高了系统的灵活性和扩展性,也降低了开发者的技术门槛,使得嵌入式应用开发更为高效和便捷。
2025-10-23 14:48:54 30.8MB stm32 USB FatFS
1
标题“U盘枚举_复制_删除_安全移除全过程数据.zip”涉及到的是关于U盘在计算机系统中进行枚举、复制、删除以及安全移除的整个操作流程的数据分析。这个压缩包包含了一系列相关的文件,提供了对这些操作的详细记录。 描述中提到,这些数据是通过Beagle USB 480 Protocol Analyzer分析仪获取的。这是一款专业的USB协议分析工具,它能够捕获并解析USB设备与主机之间的通信,包括设备枚举(识别新插入的硬件)、数据传输(如复制文件)、文件操作(如删除)以及设备安全移除的过程。这种分析对于理解USB设备的工作原理,调试USB驱动程序,或者检测和解决USB设备相关问题都极其有价值。 "USB分析仪U盘数据抓取分析.pdf"可能是一个详细的报告,详述了使用Beagle USB 480 Protocol Analyzer进行数据抓取和分析的步骤,可能涵盖了如何设置分析仪,如何捕获特定操作的通信数据,以及如何解读这些数据以了解U盘操作的细节。 "U盘枚举过程-复制-删除-弹出U盘U盘名称KEVIN.tdc"文件可能包含了U盘“KEVIN”的一个完整操作序列,从枚举到复制文件,再到删除文件和最终的安全移除。.tdc文件通常用于存储协议分析器捕获的数据,可以使用配套软件打开查看具体的通信记录。 "readme.txt"通常是提供额外信息或指南的文本文件,可能包含了关于如何解压和解读这些数据的说明,或者对分析过程的简要概述。 "data-center-windows-i686-v6.60"可能是一个软件包,可能是用于分析或处理捕获的USB数据的软件,或者是特定版本的Windows数据中心版,用于支持这些复杂的USB分析任务。 这个压缩包提供了一个深入学习和研究USB设备操作机制的机会,特别是对于硬件开发者、软件工程师以及那些对USB协议有深度需求的人员来说,具有极高的参考价值。通过这些文件,我们可以了解到U盘在操作系统中的行为,理解USB设备的生命周期管理,以及如何确保安全有效地移除USB设备,防止数据丢失或系统故障。
2025-10-22 11:08:31 57.62MB U盘枚举 安全移除 全过程数据
1
软件介绍: 通过量产工具可以将普通U盘分区为CDROM分区 普通分区,用来创建U盘启动盘,如果想移除CDROM分区,可以使用这个小工具CD-ROM Remover来移除,具体支持的主控类型不清楚,可以下载后自己测试。
2025-10-20 11:49:02 168KB U盘相关工具
1
老杨学籍照片采集系统(2015高级U盘版)是使用摄像头大批量照片采集软件,充分吸取了当前市场上各种同类主流产品的优点,并经过长时间市场调查和系统设计而开发完成的共享软件。本系统充分考虑到最终用户的易用性和移动性,如取U盘序列号为机器码,不写入了数据,U盘仍可以随意使用,即使格式化U盘,也不影响软件使用(序列号不变)。U盘版不固定电脑,可移动等方便使用。 该版本除普通版所且有的功能外,增加了以下功能: 1、自定义相片规格(数字和物理尺寸); 2、分班和批量打印班级相册; 3、分班和批量导出压缩文件; 4、语音报号; 5、信息增加、修改、删除与查询; 6、批量处理与裁剪; 7、批量换名; 8、查询打印未照相学生、身份证号重复学生、无身份证号学生等名单; 9、查看相片规格(像素)、大小(BK)、尺寸(mm)、dpi 10、证件打印
2025-10-18 10:14:48 25.4MB 学籍照片采集
1
非常适合做虚拟产品的用户购买,提升自己的购买率!!! 一共有两个软件,第一个将百度网盘的目录导出成txt格式的目录树,第二个软件将txt的内容快速生成有折叠功能的目录的网页,上传到服务器后方便查看。
2025-10-17 17:39:54 39.08MB 百度网盘
1
GD32F4系列微控制器是基于ARM Cortex-M4内核的高性能32位通用微处理器,广泛应用于各种嵌入式系统中。IAP(In-Application Programming)程序升级技术允许用户在不改变硬件的情况下,通过软件的方式更新或升级嵌入式设备中的程序代码。利用USB主机模式实现的U盘IAP升级方法,为开发者提供了一种便捷的程序升级途径。 实现GD32F4通过USB主机模式的U盘实现IAP程序升级,首先需要确保微控制器具备USB主机功能。这通常意味着微控制器硬件和固件必须支持USB OTG(On-The-Go)标准,允许它作为USB主设备与USB设备进行通信。在设计上,硬件工程师需要在GD32F4的电路板上布局USB相关的接口电路,而软件工程师则需要编写相应的USB主机驱动程序,用于实现与连接到USB接口的U盘之间的数据通信。 具体实现步骤可以分为以下几个阶段: 1. 硬件连接:确保GD32F4微控制器与U盘正确连接。通常,这涉及到将U盘的USB接口连接到GD32F4开发板上的USB OTG接口。 2. USB主机驱动开发:编写或集成USB主机端的驱动程序,使其能够识别连接的U盘,并建立通信连接。这部分工作包括USB主机控制器的初始化、USB设备枚举过程的管理,以及必要的错误处理机制。 3. 文件系统识别:成功枚举U盘后,需要实现文件系统识别功能,以找到存储在U盘上的固件文件。常见的是FAT文件系统,因此需要实现FAT文件系统的解析代码。 4. 固件升级:识别出固件文件后,编写IAP升级代码,将U盘中的固件数据读取出来,并通过IAP接口写入到GD32F4的闪存中。这个过程中需要确保数据的完整性和正确的写入地址,以避免破坏现有的程序或造成系统不稳定。 5. 验证和启动新固件:固件写入完成后,通常需要一些验证机制来确认固件升级是否成功。之后,通过软硬件结合的方式实现从新固件启动,从而完成整个IAP升级过程。 在编程实现上述功能的过程中,需要特别注意USB通信的稳定性和数据传输的可靠性。此外,由于GD32F4属于微控制器,它通常具有一定的资源限制,因此在实现USB主机功能和文件系统时,需要考虑到性能优化,以确保升级过程的效率。 在软件开发方面,开发者需要利用GD32F4提供的标准库函数和相应的开发工具链,如Keil MDK、IAR Embedded Workbench等,来实现整个IAP升级的软件逻辑。这通常涉及到对USB协议栈的理解、编程以及对目标硬件平台的深刻认识。 GD32F4通过USB主机模式的U盘实现IAP程序升级,为嵌入式设备提供了灵活且便捷的软件更新方案。这项技术的实现,不仅需要硬件平台的支持,还需要软件层面的精心设计与编程,以保证升级过程的安全性和可靠性。
2025-10-16 00:33:24 3.67MB GD32
1