USB-SERIAL CH340 2019是针对CH340系列USB转串口芯片的2019年版驱动程序。CH340是一款常用的USB转串口转换芯片,它广泛应用于各种微控制器和计算机之间的串行通信。这种芯片通过USB接口简化了串行通信,使得在现代计算机上不需要额外的串口硬件即可实现串行通信。USB-SERIAL CH340 2019驱动程序的发布,主要目的是提供对CH340芯片的稳定支持,确保在Windows操作系统(特别是64位版本,即x64)上能够顺畅工作。 CH340芯片具备USB总线功能和串行接口功能,通过USB接口提供1个USB全速设备接口和1个串行端口。芯片内嵌固件,对USB通信协议进行处理,为使用微控制器进行串口通信提供了方便。因此,CH340广泛应用于单片机、电子模块、智能家居设备等需要与计算机通信的场合。 USB-SERIAL CH340 2019驱动程序是这一系列驱动的最新版本,它可能包括了对新操作系统的兼容性改进、性能提升、新的功能以及对已知问题的修复。驱动程序的更新对于用户而言尤为重要,因为它可以确保通信过程中的数据传输更加可靠,同时减少由于驱动不兼容而导致的通信错误或设备识别失败的问题。 在安装USB-SERIAL CH340 2019驱动程序之前,用户需要确认自己的操作系统版本,以及是否需要32位(x86)或64位(x64)版本的驱动。压缩包文件中的“USB-SERIAL CH340_2019_x64”文件名表明该驱动是为64位Windows操作系统准备的。用户在下载后,通常需要执行一个安装程序或手动安装驱动文件。安装过程中,系统可能会要求用户选择正确的端口配置或确认安装,随后完成安装向导。 对于开发者而言,CH340芯片提供了一种相对低成本的解决方案来实现PC与各种嵌入式设备之间的串行通信。CH340支持常用的串行通信协议,并且具有良好的稳定性和兼容性,使其成为了许多项目的理想选择。 随着技术的发展,USB-SERIAL CH340 2019驱动程序也可能加入了一些新的特性,例如支持更多操作系统,提供更多的配置选项,增强安全特性等。所有这些改进都是为了更好地适应不断变化的技术需求和用户需求。 USB-SERIAL CH340 2019驱动程序对于需要使用CH340芯片实现USB转串口通信的用户来说,是必不可少的软件组件。它不仅能够确保通信的稳定性和效率,而且还能提供最新的技术特性,从而提升用户的整体使用体验。
2025-05-06 10:25:22 52KB 串口通讯驱动
1
软件介绍: USBDeview.exe可以显示已经连接到计算机USB上的所有设备,显示设备类型名称及描述信息,显示设备是否已经连接上。在丢的设备上可断开/卸载所选设备,禁用或设备所选设备,可在注册表编辑器中打开,打开驱动或自动播放。可将所有设备导出为HTML格式网页报告以供查看。这个是绿色版本不用安装就能使用。
2025-05-05 00:50:26 331KB 其他资源
1
在本文中,我们将深入探讨如何使用QT C++和FFmpeg库来调用USB摄像头,实现实时显示视频流,并进行H264编码的视频录制。FFmpeg是一个强大的开源多媒体处理框架,支持多种编码、解码、转换和流化功能。QT C++则是一个流行的跨平台应用程序开发框架,提供了丰富的图形用户界面(GUI)工具和系统访问接口。 确保你的开发环境中已经安装了QT和FFmpeg库。对于FFmpeg,你需要下载源代码并按照官方文档编译安装,确保配置时包含了所需的编解码器和库,例如libavformat、libavcodec、libavutil和libavdevice,这些是与设备输入输出和编码解码相关的组件。 在QT项目中,你需要引入FFmpeg的头文件和链接库。这可以通过在.pro文件中添加以下行实现: ```cpp INCLUDEPATH += /path/to/ffmpeg/include LIBS += -L/path/to/ffmpeg/lib -lavformat -lavcodec -lavutil -lavdevice ``` 接下来,创建一个QT窗口,用于显示来自摄像头的视频流。可以使用QVideoWidget或QOpenGLWidget作为显示视图。创建一个QThread子类来处理视频捕获和编码任务,以避免阻塞主线程。在该线程中,你可以使用FFmpeg的`avdevice_open_input()`函数打开USB摄像头,然后使用`avformat_find_stream_info()`获取流信息。 ```cpp AVFormatContext *fmtCtx = nullptr; if (avformat_open_input(&fmtCtx, "video://0", nullptr, nullptr) != 0) { // 错误处理 } if (avformat_find_stream_info(fmtCtx, nullptr) < 0) { // 错误处理 } ``` 找到摄像头的视频流后,你需要创建一个AVCodecContext来配置编码参数。H264编码可以通过查找名为"libx264"的编码器来实现。之后,使用`avcodec_open2()`打开编码器。 ```cpp AVCodec *codec = avcodec_find_encoder(AV_CODEC_ID_H264); AVCodecContext *encCtx = avcodec_alloc_context3(codec); // 配置编码参数... if (avcodec_open2(encCtx, codec, nullptr) < 0) { // 错误处理 } ``` 为了实时显示视频流,创建一个QImage从AVFrame中解析像素数据,然后更新QVideoWidget或QOpenGLWidget。同时,你还需要创建一个输出文件,使用`avio_open()`打开,`avformat_write_header()`写入文件头,然后在每一帧编码后使用`av_interleaved_write_frame()`将编码后的数据写入文件。 ```cpp AVOutputFormat *outFmt = av_guess_format("mp4", "output.mp4", nullptr); AVFormatContext *outFmtCtx = nullptr; avformat_alloc_output_context2(&outFmtCtx, outFmt, nullptr, "output.mp4"); if (avio_open(&outFmtCtx->pb, "output.mp4", AVIO_FLAG_WRITE) < 0) { // 错误处理 } avformat_write_header(outFmtCtx, nullptr); while (捕获视频帧) { // 编码和显示帧... AVPacket pkt; av_init_packet(&pkt); pkt.data = nullptr; pkt.size = 0; avcodec_encode_video2(encCtx, &pkt, frame, &gotPacket); if (gotPacket) { pkt.stream_index = videoStreamIndex; av_interleaved_write_frame(outFmtCtx, &pkt); } } av_write_trailer(outFmtCtx); ``` 别忘了在完成后释放所有资源,关闭输入和输出文件上下文,以及关闭编码器和解码器上下文。 通过以上步骤,你就能在QT C++环境中利用FFmpeg调用USB摄像头,显示视频流,并以H264编码保存为MP4格式的视频文件。这个过程涉及了多媒体处理、多线程编程、文件I/O和编码解码等多个方面的知识,对于深入理解QT和FFmpeg的使用非常有帮助。在实际开发中,可能还需要考虑性能优化、错误处理和用户交互等方面的问题,以提供更好的用户体验。
2025-05-04 17:06:09 111.06MB ffmpeg
1
**CSR USB-SPI编程器驱动详解** CSR(Cambridge Silicon Radio)是一家著名的无线通信技术公司,其产品广泛应用于蓝牙、Wi-Fi以及各种嵌入式系统。在开发或调试基于CSR芯片的设备时,通常需要使用特定的编程器来对芯片进行编程或烧录固件。在本案例中,我们关注的是CSR USB-SPI编程器,它通过USB接口与电脑相连,以实现对目标设备的SPI通信。 **驱动程序的重要性** 驱动程序是操作系统与硬件设备之间的桥梁,它提供了必要的指令集,使操作系统能够识别和控制硬件设备。在CSR USB-SPI编程器的情况下,驱动程序扮演了至关重要的角色,因为它允许计算机识别编程器并建立有效的通信链路。如果没有正确安装相应的驱动,即使编程器物理上连接到了电脑的USB端口,操作系统也无法识别这个设备,从而无法进行正常的编程操作。 **32位与64位驱动兼容性** 随着计算机技术的发展,操作系统从传统的32位逐渐过渡到64位架构。CSR USB-SPI编程器的驱动程序同时支持32位和64位的Windows系统,这意味着无论你使用的是32位还是64位的Windows版本,都可以顺利地进行硬件编程。这种兼容性极大地扩展了该编程器的应用范围,确保了不同用户环境下的稳定工作。 **安装与使用** 在安装CSR USB-SPI编程器的驱动时,通常需要遵循以下步骤: 1. **下载驱动**:你需要从可靠来源下载适用于你操作系统版本的USB-SPI_32bit&64bit_drivers压缩包。 2. **解压文件**:将下载的RAR文件解压缩,得到驱动程序的安装文件。 3. **连接编程器**:将编程器通过USB线连接到电脑的USB端口。 4. **安装驱动**:运行解压后的安装文件,按照向导提示进行安装。在安装过程中,系统可能会自动检测到新硬件并提示安装驱动,或者你可以手动指定驱动路径。 5. **验证安装**:安装完成后,打开设备管理器检查是否成功安装。你应该能在通用串行总线控制器类别下看到CSR USB-SPI编程器,并且状态显示为正常。 **应用与功能** CSR USB-SPI编程器主要用于以下场景: 1. **固件更新**:当需要升级或修复CSR芯片上的固件时,可以通过编程器完成。 2. **调试与测试**:在产品开发阶段,编程器可以帮助开发者快速验证代码,查找和修复问题。 3. **生产制造**:在批量生产过程中,编程器可以用于快速、高效地烧录每个产品的初始固件。 CSR USB-SPI编程器的32/64位驱动程序是确保设备在各种Windows环境下正常工作的关键。正确安装和使用驱动,可以极大地提升开发和生产效率,是与CSR芯片相关的项目中不可或缺的工具。
2025-05-04 16:45:41 101KB 其他资源
1
USB(Universal Serial Bus)是一种通用串行总线标准,用于在个人电脑及其外围设备之间进行数据传输。USB仿真代码是用于模拟USB设备行为的软件工具,帮助开发者理解USB的工作原理,进行USB设备驱动开发或者应用设计。SimLink是MATLAB中的一个仿真环境,常用于系统级的建模和仿真。 在“usb11_sim_model”这个文件中,我们可以推测这可能是针对USB 1.1规范的仿真模型。USB 1.1是USB的第一个广泛采用的版本,它定义了两种传输速度:全速(Full Speed)和低速(Low Speed)。全速模式下,数据传输速率可达12Mbps,而低速模式则为1.5Mbps。USB 1.1规范还包括了设备类定义,如人机接口设备(HID)、打印机、存储设备等,以及如何与主机进行通信的协议。 在USB的通信中,有设备端(Device)和主机端(Host)的概念。设备端包含设备控制器,负责处理USB通信,而主机端管理整个USB总线,控制数据传输。USB通信基于请求-响应机制,通过控制、中断、批量和同步四种传输类型来实现不同优先级的数据交换。 SimLink模型通常由一系列模块组成,每个模块代表系统中的一个功能单元。对于USB仿真,可能包括以下部分: 1. **USB总线模型**:模拟USB物理层,包括信号传输、编码解码以及电气特性等。 2. **USB设备模型**:表示具体的USB设备,如HID键盘或USB闪存驱动器,包括设备控制器的逻辑和相应的设备类描述符。 3. **USB主机控制器模型**:模拟主机端的行为,处理设备枚举、配置选择、数据传输等任务。 4. **事务传输模型**:处理USB通信中的控制传输、中断传输、批量传输和同步传输。 5. **错误处理模型**:模拟USB通信中可能出现的错误,如CRC校验失败、超时、带宽冲突等,并提供相应的恢复策略。 通过SimLink仿真,开发者可以测试不同场景下的USB通信,验证设备和主机间的交互是否符合USB协议。此外,还可以分析系统性能,比如传输速率、延迟等指标,以便优化设计。 为了深入学习USB工作原理,可以分析“usb11_sim_model”文件中的模块结构,理解各个模块的功能,以及它们之间的连接关系。同时,配合MATLAB的SimLink教程和USB规范文档,可以更全面地掌握USB通信的核心概念和技术细节。这将对进行USB设备驱动开发、嵌入式系统设计,甚至是理解USB设备与主机间的交互过程大有裨益。
2025-05-03 14:11:57 102KB usb simlink
1
本项目基于STM32 USB AUDIO系列 (一) 48k采样率 0进2出 16bit进行修改。 添加了2路麦克风输入,实现48k采样率,2进2出usb通道数,2字节模式,16bit。 本项目未添加I2S输入,上传到PC数据为PC下发的数据。仅通过USB OUT -> USB IN进行回环测试。 本项目继承自STM32 USB AUDIO系列的基础工作,主要针对USB音频设备的开发进行深入扩展。在原有的项目基础上,我们通过增加麦克风输入功能来实现更丰富的音频输入场景,同时也保持了原有的48k采样率和16位音频数据精度,确保了音频信号的高品质传输。 项目的升级重点在于支持两路麦克风输入,这使得设备能够在同时录入两个音频信号,适用于需要同时处理多路音频输入的场景,如立体声录音或双人通话等。同时,项目维持了2进2出的USB通道数,即可以同时进行两路音频的输入与输出,这种设计极大地提升了音频设备的多任务处理能力,适合需要实时监听与处理音频的专业应用。 在数据格式方面,本项目采用了2字节模式,即16位的数据宽度,这是一种常见的音频数据格式,用以确保音频数据的高精度处理。音频数据的高精度是高质量音频体验的关键,能够带来更丰富的音质细节和更少的信号失真。 值得注意的是,本项目并未集成I2S接口,这意味着音频数据的处理仅限于通过USB接口进行。项目中的音频数据流方向是从PC端下发到USB设备,然后通过USB设备输出,最后回环到PC端进行测试。这种设计简化了系统的复杂度,同时也减少了硬件接口的占用,适用于那些仅需要USB接口音频功能的用户。 通过这样的升级和调整,本项目不仅扩展了原有的功能,还提供了一个高效的测试平台,用于验证STM32 USB AUDIO设备的音频数据传输性能。开发人员可以通过这个平台进行各种USB音频设备的性能测试,确保产品的稳定性与可靠性。 另外,项目文件名称为"usb_audio_test_V0.1_250105",暗示了这是一个版本号为0.1的测试版,日期标记为250105,可能是指项目完成或更新的具体日期。从文件命名可以推测,这可能是项目开发过程中的一个早期版本,意在进行初步的功能验证和性能测试。 本项目在原有的STM32 USB AUDIO系列基础上,通过增加麦克风输入功能,提升了设备的音频输入性能,同时也保持了高质量的音频输出。此外,通过精简设计,优化了数据流处理,为专业用户和开发者提供了一个高效、简便的测试环境,有助于快速评估和改进USB音频设备的性能表现。
2025-05-03 11:36:47 10.81MB STM32 USBAUDIO
1
V2.2.7.57。Sysnucleus USBTrace是一款强大而且易用的软件,用来分析USB总线和与之相连的USB设备的的连接状况,USBTrace可以监视USB主控制器,分线器,设备的运行,USBTrace特别适合检测主机方的USB控制协议。
2025-05-02 20:36:28 2.42MB USBTrace USB 抓包
1
USB(Universal Serial Bus)是一种通用串行总线标准,用于连接计算机系统和各种外围设备,如打印机、扫描仪、移动硬盘、手机等。Verilog是一种硬件描述语言(HDL),常用于数字电子系统的建模和设计,包括USB控制器。Testbench在Verilog中是验证设计的关键部分,它是对设计模块的模拟环境,用于测试和验证硬件设计的功能正确性。 在“USB verilog 源码 testbench”项目中,我们可以深入探讨以下几个关键知识点: 1. **USB协议理解**:我们需要了解USB的基本概念,包括USB的版本(如USB 1.1、2.0、3.0、3.1等)、传输速率(低速、全速、高速、超速)、数据传输模式(控制传输、批量传输、中断传输、同步传输)以及它的帧结构和握手协议。 2. **USB控制器设计**:USB控制器是实现USB通信的核心部件,负责处理与主机的通信,包括枚举过程、数据包解析、错误检测和恢复等。在Verilog中,设计USB控制器需要理解并实现USB协议的细节,并且要考虑到时序和同步问题。 3. **Verilog语法**:理解并应用Verilog的基本语法,如数据类型、操作符、进程(always块)、模块实例化等,来构建USB控制器的模型。 4. **Testbench构建**:创建一个有效的testbench涉及到建立一组激励(stimuli)来模拟USB主机的行为,以及设置适当的边界条件和异常情况来测试控制器的健壮性。这通常包括初始化序列、数据包的生成、错误注入和响应检查等部分。 5. **高级Verilog特性**:在复杂的testbench中,可能会用到Verilog的高级特性,如任务(task)、函数(function)、系统任务(system tasks)以及随机化(randomization)等,以提高测试覆盖率和效率。 6. **仿真工具和流程**:了解如何使用像ModelSim、VCS、Icarus Verilog等仿真工具进行编译、仿真和波形查看。熟悉Makefile或EDA工具的脚本语言,以便自动化编译和运行测试。 7. **覆盖率分析**:在验证过程中,覆盖率是衡量设计是否充分测试的重要指标。理解代码覆盖率、功能覆盖率和协议覆盖率的概念,并学会使用相应的工具进行分析。 8. **验证方法学**:理解UVM(Universal Verification Methodology)等现代验证方法学,虽然题目中没有明确提到UVM,但在大型项目中,使用基于UVM的验证环境可以提高复用性和可维护性。 通过以上知识点的学习和实践,我们可以编写出能够有效验证USB控制器Verilog源码的testbench,确保其在实际应用中的正确性和可靠性。在设计和验证过程中,不断地迭代和优化,是提升USB控制器性能和兼容性的关键步骤。
2025-05-02 00:38:36 226KB usb
1
索尼相机usb驱动,光盘丢了的下,支持卡片机系列的
2025-04-30 11:38:55 1.52MB USB
1
在当今快速发展的信息技术领域中,对于数据的捕获与分析显得尤为重要。USB协议作为计算机与外设之间通信的重要桥梁,其数据的捕获和分析工作同样不可或缺。为了更好地进行USB协议分析,开源嗅探器(sniffer)软件应运而生,它能够实时捕获USB数据包并进行解析,帮助开发者、测试人员和安全研究人员深入理解USB通信过程。 随着技术的发展和需求的增加,开源sniffer软件通常会引入脚本语言支持,以增强其灵活性和扩展性。其中,Lua语言以其轻量级、高效的特性,成为编写此类脚本的热门选择。在原有的sniffer软件中增加了Lua文件解析功能,意味着用户可以通过编写Lua脚本来定义数据包的解析规则,从而更精确地对捕获到的USB数据包进行分析和处理。 整合了Lua解析功能后的usbpv软件,即是在此基础上的一个应用实例。通过这一软件,用户不仅能够捕获USB通信数据,还能借助Lua脚本对数据包内容进行详细解读。这使得usbpv软件不仅仅是一个简单的数据包捕获工具,而是一个功能更为强大的USB协议分析平台。在分析过程中,用户可以自定义解析规则,实现对特定USB数据包的深入分析,这对于研究USB协议的具体实现、定位故障问题或进行安全分析等方面都具有极高的实用价值。 此外,引入Lua语言支持的usbpv软件,还能够通过脚本实现自动化测试,例如自动化检查USB设备的兼容性,或者自动化执行一些重复性的测试任务。这样的自动化能力大大提高了工作效率,降低了重复工作的劳动强度,使得USB协议的分析工作更加高效和准确。 在标签方面,"USBPV"、"USBsniffer"、"USB协议分析"清楚地表明了该软件的核心功能和应用场景。"USBPV"很可能是软件的简称或项目名称,"USBsniffer"强调了软件作为嗅探器的定位,而"USB协议分析"则直接指出了软件的应用目的和功能。这些标签对于识别软件的特性和用途提供了直接的信息,有助于用户快速找到并了解所需工具。 增加了开源sniffer的lua文件解析功能后的usbpv软件,在USB协议分析领域中扮演着极为关键的角色。其不仅提高了数据分析的灵活性和深度,还为自动化测试和深入研究提供了强大的技术支持,是USB通信领域研究和开发不可或缺的工具之一。
2025-04-30 10:24:54 8.74MB USB协议分析
1