一个基于UDP的VC++6.0编译的网络聊天小程序,socket方式编程,在windows下,知道对方的ip就可以进行聊天,简单小巧
2025-06-08 20:00:35 3.93MB VC,UDP,聊天,聊天室,socket
1
在VC++编程中,有时我们需要调用外部的exe程序或者批处理文件来执行特定任务。以下是在VC++中实现这一功能的四种常见方法: 1. 使用`system`函数: `system`函数是C库中的一个函数,允许你执行命令行操作。在VC++中,你可以直接调用它来执行exe或bat文件。例如,如果有一个批处理文件位于"D:\test.bat",你可以这样调用: ```cpp CString strCommand("d:\\test.bat"); system(strCommand); ``` 这个函数简单且易于使用,但缺点是它会阻塞调用它的进程,直到外部程序执行完毕。 2. 使用`ShellExecute`函数: `ShellExecute`函数是Windows API的一部分,它可以更灵活地控制如何启动程序。它可以设置窗口是否可见,以及执行的操作类型(如打开、打印等)。例如: ```cpp HINSTANCE result = ShellExecute(NULL, "open", "d:\\test.bat", NULL, NULL, SW_HIDE); ``` 这里,`SW_HIDE`参数表示隐藏启动的程序窗口。 3. 使用`CreateProcess`函数: `CreateProcess`是Windows API提供的另一个函数,它提供了更多控制权,如进程优先级、创建标志等。以下是一个示例: ```cpp std::string strCommand = "d:\\PerDecodeX2ap.exe"; PROCESS_INFORMATION pi; STARTUPINFO si; memset(&si, 0, sizeof(si)); si.cb = sizeof(si); si.wShowWindow = SW_HIDE; si.dwFlags = STARTF_USESHOWWINDOW; char buff[256]; sprintf(buff, "%s", strCommand.c_str()); BOOL success = CreateProcess(NULL, buff, NULL, NULL, FALSE, NORMAL_PRIORITY_CLASS | CREATE_NO_WINDOW, NULL, NULL, &si, &pi); if (!success) { // 错误处理 } CloseHandle(pi.hThread); CloseHandle(pi.hProcess); ``` 这个函数可以让你创建一个新的独立进程,并可以获取其进程和线程句柄。 4. 自定义封装函数: 有时候,你可能希望封装一个通用函数,以便在项目中多次调用。例如,`CommandExecuter`函数可以接受应用程序名和命令行参数,然后尝试不同方式启动程序。这个函数可能会包含对`system`、`ShellExecute`和`CreateProcess`的调用,以确保在各种情况下都能成功启动程序。 以上四种方法各有优缺点。`system`简单但不灵活;`ShellExecute`和`CreateProcess`提供了更多的控制,但使用起来稍复杂;自定义封装函数则可以根据具体需求进行定制。在实际开发中,应根据项目需求选择最适合的方法。
2025-06-07 13:00:41 22KB
1
在IT行业中,Flash和Visual C++(VC)的结合使用是一种常见的技术,特别是在早期的互联网应用和桌面软件开发中。本教程将详细讲解如何在VC项目中调用Flash,以实现两者之间的交互。 我们需要了解Flash的核心是ActionScript,它是一种基于ECMAScript的脚本语言,用于控制和交互Flash内容。而VC则是一款强大的C++集成开发环境,广泛应用于Windows平台上的应用程序开发。当需要在VC应用中嵌入动态、交互式的多媒体内容时,Flash的引入就显得尤为重要。 **步骤1:准备Flash内容** 创建或获取一个SWF文件,这是Flash内容的发布格式。确保这个SWF包含你希望在VC程序中调用的函数和交互逻辑。你可以使用Adobe Flash IDE或其他Flash开发工具来创建这样的内容。 **步骤2:引入Flash播放器组件** VC中调用Flash需要使用ActiveX控件,例如Adobe Flash Player ActiveX。在VC的资源编辑器中,添加一个新的控件,并选择Flash Player控件。设置控件的属性,如大小、位置等,以便在应用程序窗口中正确显示。 **步骤3:暴露Flash函数** 在Flash中,你需要定义一些可以被外部调用的全局函数。这些函数可以通过ActionScript的`ExternalInterface.addCallback()`方法暴露给外部环境,例如VC。例如,你可以创建一个名为`callFromVC`的函数,接收参数并返回结果。 ```actionscript // ActionScript代码示例 ExternalInterface.addCallback("callFromVC", function(param1, param2):String { // 处理逻辑 return "处理后的结果"; }); ``` **步骤4:VC调用Flash函数** 在VC项目中,你将使用`IDispatch`接口来调用Flash的暴露函数。你需要获取到Flash控件的接口指针,然后通过`Invoke`方法调用Flash中的函数。以下是一个简单的示例: ```cpp #include // 获取Flash控件的IDispatch接口 IDispatch* pDispatch = (IDispatch*)GetDlgItem(IDC_FLASHPLAYER)->m_hWnd; // 定义调用函数的参数类型 VARIANT param1, param2, result; VARIANTInit(¶m1); VARIANTInit(¶m2); VARIANTInit(&result); // 设置参数 param1.vt = VT_BSTR; param1.bstrVal = SysAllocString(L"参数1"); param2.vt = VT_BSTR; param2.bstrVal = SysAllocString(L"参数2"); // 调用Flash函数 DISPID dispid; DISPPARAMS params = { ¶m1, ¶m2, 2, 0 }; HRESULT hr = pDispatch->GetIDsOfNames(IID_NULL, L"callFromVC", 1, LOCALE_USER_DEFAULT, &dispid); if (SUCCEEDED(hr)) { hr = pDispatch->Invoke(dispid, IID_NULL, LOCALE_USER_DEFAULT, DISPATCH_METHOD, ¶ms, &result, NULL, NULL); if (SUCCEEDED(hr)) { // 处理返回结果 BSTR bstrResult = result.bstrVal; // ... } } // 清理 VARIANTClear(¶m1); VARIANTClear(¶m2); VARIANTClear(&result); ``` **步骤5:处理事件和通信** VC与Flash之间的通信不仅限于调用函数,还可以通过监听事件来实现双向交互。Flash可以通过`ExternalInterface.call()`方法主动调用VC中的函数,而VC需要注册事件处理函数来响应这些调用。 以上就是VC调用Flash的基本流程,实际应用中可能需要考虑更多的细节,比如错误处理、资源释放等。在项目中,你可能还需要处理Flash与VC之间的数据类型转换,以及异步调用的问题。记得在完成操作后释放所有使用的COM对象,以防止内存泄漏。 通过这样的结合,你可以创建具有丰富图形和交互功能的桌面应用程序,充分利用Flash的动画和媒体处理能力,同时利用VC的强大编程能力进行系统级的整合和控制。在"FlashToVC"这个项目中,你将会看到具体的实现示例,进一步学习如何在实际开发中实现这种集成。
2025-06-07 08:41:39 3.99MB flash
1
在IT行业中,VC++(Visual C++)是一种广泛使用的编程环境,由微软公司开发,用于构建Windows平台上的桌面应用程序。而“Flash播放器”则指的是Adobe Flash Player,它是一款能够播放SWF格式的多媒体内容的软件,过去在网页上播放动画、视频和交互式内容非常流行。将这两者结合,"vc++ flash 播放器"通常指的是使用VC++来编写程序,以实现对Flash内容的本地播放功能。 要创建一个VC++ Flash播放器,开发者需要理解以下几个关键知识点: 1. **ActiveX控件**:Flash Player曾以ActiveX控件的形式存在,可以在Windows应用程序中嵌入和运行。VC++允许开发者通过COM(组件对象模型)接口与ActiveX控件进行交互。因此,开发者需要熟悉如何在MFC(Microsoft Foundation Classes)或Win32 API中使用ActiveX容器来加载和控制Flash控件。 2. **Flash API**:Flash Player提供了ActionScript接口,允许外部程序与Flash内容进行交互。开发者需要了解如何调用这些API,如播放、暂停、停止和改变播放进度等。 3. **用户界面设计**:VC++ Flash播放器需要一个用户友好的界面,包括播放、暂停、停止、音量控制等按钮。这涉及到MFC或Windows窗体设计知识,以及事件处理和消息循环的理解。 4. **错误处理**:在实现播放器时,必须考虑到各种可能的错误情况,如Flash文件加载失败、用户权限不足等,并提供相应的错误处理机制。 5. **安全性**:由于Flash Player在过去的版本中存在多个安全漏洞,因此,开发者需要关注安全问题,确保播放器在处理Flash内容时不会成为恶意代码的入口。 6. **兼容性**:确保播放器能支持不同版本的Flash内容,可能需要适配不同的Flash Player ActiveX版本。 7. **性能优化**:为了提供流畅的用户体验,开发者需要关注播放器的性能,例如减少内存占用、优化渲染速度等。 8. **资源管理**:在程序中正确管理和释放Flash Player控件所占用的资源,防止内存泄漏。 随着HTML5技术的发展,Flash逐渐被淘汰,Adobe也已停止了对其的支持。但如果你仍需要在特定场景下使用Flash,了解如何用VC++编写Flash播放器仍然是有价值的技能。不过,现在更多的趋势是转向使用HTML5的Video元素和WebGL等技术来实现多媒体内容的播放。
2025-06-07 08:34:18 16KB vc++ flash
1
MSDN 2005 英文版 VC开发者必备
2025-06-05 13:58:00 1.56GB
1
此工具可以制作压缩包,
2025-06-04 22:53:17 10.24MB tool
1
在现代雷达技术中,逆合成孔径雷达(Inverse Synthetic Aperture Radar,简称ISAR)成像技术因其能够提供目标的二维或三维图像,在目标识别、军事侦察和航天探测等领域发挥着重要作用。ISAR成像定标是一系列方法和步骤,用于校正和提高ISAR图像的质量,包括仿真和实测成像,运动补偿,参数估计,散射点提取,横向定标,以及利用sgp4模型进行运动预测等环节。这些环节共同确保了成像过程的准确性和成像结果的质量。 仿真和实测成像是ISAR成像定标的基础,通过模拟和实际测量来获取目标的回波数据。在仿真环节中,研究人员利用计算机模型构建目标和环境,模拟雷达波与目标相互作用的过程,以预测成像结果。实测成像则是使用真实雷达系统对目标进行扫描,获得真实的回波信号。通过对比仿真与实测结果,可以验证仿真模型的准确性和可靠性。 运动补偿是ISAR成像定标中的关键步骤,因为目标和雷达平台的相对运动会影响成像质量。运动补偿的目的是消除这种运动影响,包括目标的平移运动和旋转运动。通过参数估计,我们可以识别和计算出目标的运动参数,如速度、加速度和旋转速度,进而对成像过程进行校正。 散射点提取是分析ISAR图像的重要环节,它涉及到从图像中提取出代表目标局部结构的散射点。散射点能够提供目标的几何特征,为后续的目标识别和分类提供依据。散射点提取的质量直接影响到目标识别的准确率。 横向定标是ISAR成像定标中的校正技术,其目的是确保图像的横向尺寸和形状的准确性。通过对成像区域的横向尺度进行校正,可以确保成像结果反映目标的真实形状和尺寸。 sgp4模型是用于计算人造地球卫星轨道的一种模型,它考虑了多种轨道摄动因素,能够提供卫星位置和速度的近似值。在ISAR成像中,通过sgp4模型预测目标的运动轨迹,可以辅助运动补偿和参数估计,提高成像的准确性和效率。 以上所述内容均涵盖了ISAR成像定标的核心知识和操作流程,包含了运动预测、参数估计、图像校正等多个重要方面。通过这些步骤,ISAR成像能够提供高质量的目标图像,满足不同领域的应用需求。
2025-06-04 22:37:16 83KB
1
Advanced Installer 是一款专业的 Windows 安装包制作工具,它为软件开发者提供了一种简便的方式来创建安装程序。这款工具可以帮助用户将应用程序、文件、依赖关系以及安装时需要的各种配置打包成一个易于安装、卸载且管理方便的安装包。用户可以通过图形化的用户界面以及脚本支持来定制安装过程,并进行安装条件的设置,比如安装路径、用户权限等。Advanced Installer 提供了广泛的安装脚本和配置选项,以适应不同的安装场景和用户需求。 打包过程中,开发者需要首先定义安装包的基本信息,包括产品名称、版本号、公司名称等,这些信息将显示在安装向导中。开发者还可以设置安装程序的语言选项,以适应不同语言环境的用户。在安装包的内容管理方面,Advanced Installer 支持文件和文件夹的添加、删除、移动和重命名,同时也支持创建快捷方式和注册表项,以满足应用程序的特定配置需求。 此外,Advanced Installer 提供了对各种安装模式的支持,如 GUI(图形用户界面)模式、无人值守(静默安装)模式以及命令行模式,使得用户可以根据实际情况灵活选择安装方式。它还支持多种安装条件的设置,比如检查系统兼容性、检查运行时的先决条件、安装时运行特定脚本或程序等。 在安装包的测试阶段,开发者可以利用 Advanced Installer 的测试功能来模拟安装过程,验证安装包的正确性和完整性。一旦安装包完成,开发者可以将其编译为可执行文件(.exe)或压缩包(.msi),然后发布给最终用户进行安装。整个打包过程被设计得尽可能自动化,以减少开发者的操作负担,同时保证安装包的质量和性能。 Advanced Installer 22.5 版本作为该工具的一个更新版本,可能包含了一系列新特性、改进和修复。开发者应该查阅官方发布说明来了解新版本中加入的特定功能或改进,例如用户体验的改进、对新操作系统版本的支持以及可能引入的新的打包选项等。通过不断更新和改进,Advanced Installer 旨在为软件部署和安装领域提供更加强大和灵活的解决方案。 由于文件名称列表中只提供了“Advanced Installer”,没有提供具体版本号对应的子文件或子目录,因此无法详细描述该版本新增的具体特性。但根据描述,我们可以假设这是一个包含所有相关文件和配置的压缩包,可能是用于分发或备份 Advanced Installer 22.5 的安装文件。 高级安装程序打包工具,特别是 Advanced Installer 22.5 版本,为软件开发者提供了一种高效的方法来创建、配置和管理 Windows 安装包。开发者可以通过它来确保应用程序能够以正确的方式安装到目标系统中,并且能够满足用户的安装需求。通过这款工具,开发者能够为最终用户提供一个稳定、一致且专业的安装体验。随着软件部署需求的不断增长和复杂化,Advanced Installer 及其后续版本将继续在软件开发和发布过程中扮演着重要的角色。
2025-06-04 20:32:59 229.56MB
1
内容索引:VC/C++源码,图形处理,几何变换  图象的几何变换,C 的算法实现,运行程序后主先打开一幅BMP位图,然后选择第二项内的某个选项,这些选项的大致意思是,X/Y坐标裁切、裁切、透明化、旋转、放大等。   命令行编译过程如下:   vcvars32   rc bmp.rc   cl geotrans.c bmp.res user32.lib gdi32.lib
1
### 单像空间摄影测量后方交会程序代码(VC++) #### 概述 本文将详细介绍一份关于单像空间摄影测量后方交会的程序代码,该代码使用C++编写,并在西南交通大学土木工程学院测绘工程专业进行研究与实践。单像空间后方交会在摄影测量领域具有重要的应用价值,它可以通过分析单个图像来确定相机的位置和姿态,以及场景中的某些三维点坐标。本程序主要处理了以下关键步骤: 1. **输入数据**:包括控制点的影像坐标和地面坐标。 2. **迭代计算**:利用初始估计值逐步优化相机位置、姿态参数等。 3. **旋转矩阵构建**:根据迭代得到的角度参数构建旋转矩阵。 4. **系数阵和常数项计算**:用于求解未知数的线性方程组。 #### 输入数据格式 输入文件包含控制点的影像坐标(像素坐标)和相应的地面坐标。具体格式如下所示: ``` [pic] ``` 这里`[pic]`代表具体的数值对,每一对由影像坐标和对应的地面坐标组成,例如: ``` xi yi Xg Yg Zg ... ``` 其中`xi`和`yi`表示第i个控制点的影像坐标;`Xg`, `Yg`, 和`Zg`表示其地面坐标。 #### C++源程序解析 本程序采用模板编程技术来提高代码复用性与灵活性,并且运用了一些基本的数学库函数,如`cmath`来进行必要的数学运算。 1. **变量定义** - 内方位元素`x0`, `y0`, 和焦距`fk`。 - 估算的比例尺`m`。 - 控制点信息矩阵`B`。 - 旋转矩阵`R`。 - 未知数矩阵`XG`。 - 临时矩阵`AT`、`ATA`、`ATL`。 2. **读取控制点数据** 通过`input()`函数从文件中读取控制点的影像坐标和地面坐标,并存储在数组`B`中。 3. **确定未知数的初始值** - 计算所有地面坐标的平均值`Xs`, `Ys`, `Zs`作为初始估计值的一部分。 - 根据这些平均值及其它已知参数(如焦距`fk`),设定初始的相机位置和姿态参数。 4. **迭代计算** - 使用`do...while`循环进行迭代计算,直到满足终止条件为止。 - 在每次迭代过程中,首先构建新的旋转矩阵`R`。 - 然后根据当前的旋转矩阵计算系数矩阵`A`和常数项向量`L`。 5. **系数矩阵和常数项计算** - 对于每个控制点,根据旋转矩阵和相机模型计算相应的系数矩阵`A`和常数项向量`L`。 - 这些系数和常数项用于后续的线性方程组求解,从而进一步更新相机位置和姿态参数的估计值。 #### 总结 这份C++程序提供了完整的单像空间摄影测量后方交会的实现方法,包括了数据读取、初始值设定、迭代计算过程以及最终结果的输出。通过对程序的逐行解析,我们可以清楚地了解到整个计算流程及其背后的数学原理。这种技术在测绘、遥感等领域有着广泛的应用前景,尤其是在需要从单一图像中恢复三维信息的情况下尤为有用。
1