VisDrone无人机数据集资源是面向视觉目标检测和跟踪领域的一个重要资料库,它由中国的视觉感知与导航研究所(Visual Perception and Navigation Laboratory)发布。这个数据集专为无人机(Unmanned Aerial Vehicles, UAVs)上的计算机视觉任务设计,如目标检测、目标识别和跟踪。在当今的智能无人机系统中,这些功能对于实现自主飞行和环境理解至关重要。 数据集的名称"VisDrone"是“Visual Drones”的缩写,强调了其在视觉分析中的应用。 VisDrone-Dataset-master是这个数据集的主分支或初始版本,通常包含了完整的数据、文档、代码和其他相关资源。这个压缩包可能包含多个子文件夹和文件,如训练集、测试集、标注文件、示例代码以及用户手册等。 VisDrone数据集的特点在于其多样性和复杂性,它囊括了不同环境、天气、光照条件下的无人机航拍图像,涵盖了各种各样的目标物体,包括行人、车辆、自行车等。这样的设计使得研究者可以在更接近真实世界的场景下测试和优化他们的算法,提高模型的泛化能力。 在数据集的训练部分,每个图像都配有精确的边界框标注,用于指示每个目标物体的位置和大小。这对于监督学习的目标检测算法(如YOLO, SSD, Faster R-CNN等)是必不可少的。同时,数据集还提供了视频序列,用于目标跟踪任务,这对于评估算法在连续帧之间维持目标识别的能力至关重要。 VisDrone数据集不仅限于学术研究,也对工业界开放,有助于推动无人机智能感知技术的发展,比如无人机在物流、安全监控、农业监测等领域的应用。开发者和研究人员可以通过GitLab这样的平台获取和贡献代码,进一步扩展和改进数据集的使用方式。 总结来说,VisDrone无人机数据集是一个综合性的视觉目标检测和跟踪资源,旨在推动无人机视觉算法的进步。它提供了大量现实世界中的图像和视频数据,涵盖了多种环境和目标类型,对于开发和测试高精度的无人机计算机视觉系统具有重要意义。通过深入研究和利用这个数据集,科研人员和工程师可以提升无人机在复杂环境下的智能化水平,从而推动整个无人机行业的技术发展。
2025-12-01 09:13:34 3KB 数据集
1
内容概要:本文详细介绍了一个基于YOLOv8和DEEPSort的多目标检测跟踪系统。该系统使用VisDrone数据集进行训练和测试,包含56组测试视频,涵盖了行人和车辆等多种目标类型。系统采用PyQt5设计图形用户界面,提供了详细的环境部署说明和算法原理介绍。主要内容包括:数据集配置、YOLOv8模型加载与检测框格式转换、DeepSORT追踪模块初始化及其参数设置、PyQt5界面设计与线程管理以及环境部署的最佳实践。此外,还讨论了系统的性能优化方法,如将检测帧率限制在15fps以确保实时处理能力。 适合人群:对计算机视觉、深度学习和多目标跟踪感兴趣的开发者和技术研究人员。 使用场景及目标:适用于需要构建高效多目标检测和跟踪系统的应用场景,如智能交通监控、安防监控等领域。目标是帮助用户快速搭建并理解多目标检测跟踪系统的工作原理,同时提供实用的操作指导。 其他说明:文中提到的系统在VisDrone数据集的商场场景测试视频中表现出色,能够达到28fps的速度,并显著减少ID切换次数。然而,在极端遮挡情况下仍存在一些挑战,未来可以通过引入后处理模块进一步改进。
2025-10-27 14:02:29 1.13MB
1
YOLOv5是一种基于深度学习的目标检测模型,全称为"You Only Look Once"的第五代版本。这个模型在计算机视觉领域广泛应用,特别是在实时目标检测任务中表现出色。VisDrone(Visual Drone Detection)数据集则是专门为无人机视觉检测设计的,包含了大量无人机视角下的人、车和其他物体的标注图像,为研究和训练提供了丰富的素材。 训练YOLOv5模型使用VisDrone数据集,首先需要对数据进行预处理,包括图像的重采样、尺寸调整以及标签的解析。VisDrone数据集中的标注通常采用COCO格式,每个图像文件关联一个json文件,包含各个对象的边界框坐标和类别信息。在训练前,我们需要使用YOLOv5提供的脚本将这些信息转换为模型可识别的格式。 接下来是模型的配置。YOLOv5模型有多个变体,如YOLOv5s、YOLOv5m、YOLOv5l和YOLOv5x,分别对应不同的模型大小和性能。根据计算资源和应用需求,可以选择合适的模型架构。在`config.py`文件中,可以设置学习率、批大小、训练轮数、权重初始化等参数。 开始训练前,需要将VisDrone数据集的图像和标注文件放置在YOLOv5的`data`目录下,并创建对应的配置文件,指定数据集路径、类别的数量等。然后,运行训练命令,例如: ```bash python train.py --cfg yolov5s.yaml --data visdrone.yaml --epochs 300 --weights yolov5s.pt ``` 这里`yolov5s.yaml`是模型配置文件,`visdrone.yaml`是数据集配置文件,`--weights yolov5s.pt`表示使用预训练的YOLOv5s权重启动训练。 在训练过程中,模型会不断迭代优化权重,通过损失函数评估预测框与真实框的匹配程度。YOLOv5使用了多尺度训练(Mosaic数据增强)和在线硬样本挖掘(OHEM)策略,这有助于模型更好地泛化并提高检测性能。 训练完成后,可以通过测试集验证模型的性能,使用`test.py`脚本: ```bash python test.py --cfg yolov5s.yaml --data visdrone.yaml --weights best.pt --img 640 ``` 这将输出模型在测试集上的平均精度(mAP)等指标。 如果需要将模型部署到实际应用,可以使用`export.py`导出ONNX或TensorRT格式的模型,以提高推理速度。同时,`detect.py`脚本可用于实时检测视频或图像。 使用YOLOv5训练VisDrone数据集涉及数据预处理、模型配置、训练、验证和部署等多个环节,整个过程需要深入理解YOLOv5的架构和VisDrone数据集的特点,以便优化模型性能并满足具体应用场景的需求。在实际操作中,可能还需要不断调整参数和策略,以达到最佳效果。
2025-06-20 01:57:58 1014KB 数据集 yolov5
1
VisDrone数据集是视觉目标检测领域中一个广泛使用的数据集,特别针对无人机(Unmanned Aerial Vehicles, UAVs)视角的图像分析。这个数据集由一系列图像组成,包含了不同场景下的目标物体,如行人、车辆等,旨在促进无人机视觉理解和智能分析技术的研究。在给定的压缩包中,“部分visdrone数据集,含yolo格式标签”意味着它只包含了VisDrone数据集中的一部分,并且这些图像的标签是以YOLO(You Only Look Once)格式提供的。 YOLO是一种实时的目标检测算法,以其高效和准确著称。它的主要思想是将图像分割成多个网格(grid cells),每个网格负责预测其覆盖范围内的目标。YOLO标签通常包含四个数值,分别对应于目标框的中心坐标(相对于网格的相对坐标)和宽度与高度,再加上一个类别概率。这种紧凑的表示方式使得YOLO在处理大量目标时具有较高的速度优势。 VisDrone数据集的特性包括: 1. 多样性:图像来源于不同环境、天气和时间条件,涵盖城市、乡村、室内等多种场景。 2. 目标多样性:数据集中包含了多种目标类别,如行人、车辆、自行车等,模拟真实世界中的复杂情况。 3. 高精度标注:每个目标都有精确的边界框标注,确保了训练模型的准确性。 4. 大规模:尽管给出的是部分数据集,但仍然包含大量的图像和目标实例,适合深度学习模型的训练。 使用这部分VisDrone数据集,研究人员或开发者可以: 1. 训练和优化目标检测模型:由于VisDrone数据集的标注质量高,可以用来训练YOLO或其他目标检测模型,提升模型在无人机视角下的检测性能。 2. 模型泛化能力评估:通过对比完整数据集和部分数据集上的表现,可以评估模型对未见过的数据的泛化能力。 3. 实时性研究:由于数据集涉及无人机应用,所以可以研究模型在保持高精度的同时,如何实现快速响应,满足无人机实时性的需求。 4. 新方法验证:作为基准数据集,部分VisDrone数据集可以用于验证和比较新的目标检测算法或改进。 在实际应用中,这部分数据集可能适用于无人机监控、交通管理、安全防护等领域,帮助系统识别并跟踪无人机视野内的关键对象。通过深入理解和利用VisDrone数据集的特性,我们可以推动无人机视觉技术和相关领域的进步。
2025-06-05 10:04:35 78.11MB 数据集
1
基于YOLOv8与DEEPSort技术的多目标检测跟踪系统:包含56组visdrone测试视频、pyqt5界面设计与详细环境部署及算法原理介绍,基于YOLOv8和DEEPSort的多目标检测跟踪系统:深入探索环境部署与算法原理,附带56组visdrone测试视频的界面设计实战教程。,五、基于YOLOv8和DEEPSort的多目标检测跟踪系统 1.带56组测试视频,使用visdrone数据集。 2.pyqt5设计的界面。 3.提供详细的环境部署说明和算法原理介绍。 ,基于YOLOv8;DEEPSort多目标检测跟踪系统;56组测试视频;visdrone数据集;pyqt5界面设计;环境部署说明;算法原理介绍,基于YOLOv8和DEEPSort的56组视频多目标检测跟踪系统
2025-04-13 14:25:06 3.27MB
1
VisDrone2018 说明:后续可能不更新了。 Tips: this repo will not be updated. Baseline: Name maxDets Result Average Precision (AP) @( IoU=0.50:0.95) maxDets=500 15.8738%. Average Precision (AP) @( IoU=0.50 ) maxDets=500 21.7822%. Average Precision (AP) @( IoU=0.75 ) maxDets=500 17.1753%. Average Recall (AR) @( IoU=0.50:0.95) maxDets= 1 0.83255%. Average Recall (AR) @( IoU=0.50:0.95) maxDets=
2023-02-13 15:40:23 7.41MB faster-rcnn eccv-2018 visdrone Python
1
共8178张 训练集:测试集 为9:1 即 7275:903 主要为中小目标、密集目标,可作为小目标车辆训练检测 由于上传文件大小限制原因,内含网盘链接与提取码,请自行下载
1
1、YOLOv7算法Visdrone数据集训练权重 ,附有各种训练曲线图,可使用tensorboard打开训练日志 2、检测结果和数据集参考:https://blog.csdn.net/weixin_51154380/article/details/127346292?spm=1001.2014.3001.5502
2022-11-28 12:25:37 431.49MB Visdrone数据集 YOLOv7算法Visdrone
计算机视觉——数据格式转换,将Visdrone2019中的DET(可用来做目标检测)和VID(用来做视频目标检测和跟踪),含有readme.md和对应的代码,其中需要修改的路径部分均已说明,仅需简单进行路径修改,操作方便简单,更加适合新手小白。
1
1、yolov5-deepsort俯视场景下visdrone数据车辆检测和跟踪,包含YOLOv5训练好的visdrone数据集权重以及各种训练曲线 2、可以生成目标运动轨迹 3、pytorch框架,python代码 4、结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743