目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
2025-06-21 16:17:38 42KB 目标检测 yolo
1
无人机视角禁止游泳检测数据集VOC+YOLO格式20604张5类别.docx
2025-06-21 14:07:55 2.07MB 数据集
1
在现代工业制造流程中,铝片作为重要的基础材料广泛应用于航空、汽车、建筑等领域。然而,在铝片的生产和加工过程中,表面可能产生各种缺陷,这些缺陷可能会影响产品的使用性能和寿命。因此,铝片表面缺陷检测技术对于保障产品品质和提升生产效率至关重要。本文介绍了一套针对铝片表面工业缺陷的检测数据集,该数据集以VOC和YOLO格式提供,共计400张jpg格式的铝片表面图片及其对应的标注文件。 数据集特点: 1. 数据集数量:包含400张铝片表面图片。 2. 标注格式:遵循Pascal VOC和YOLO两种通用的目标检测标注格式。 3. 标注内容:每张图片均采用矩形框标注出铝片表面的缺陷区域。 4. 类别与数量:标注涉及四个类别,具体包括“ca_shang”(擦伤)、“zang_wu”(脏污)、“zhe_zhou”(折皱)、“zhen_kong”(针孔),各分类的缺陷数量分别为270、456、124和212。 5. 标注工具:使用广泛认可的LabelImg工具进行标注。 6. 标注规则:所有缺陷区域采用矩形框进行标注。 应用领域: 1. 制造业质量控制:铝片生产商和使用者可用于提升产品质量检测能力。 2. 计算机视觉研究:为研究者提供真实的工业视觉问题数据集,便于算法开发和评估。 3. 机器学习与深度学习:作为目标检测模型的训练和测试素材,推动AI技术在工业检测领域的应用。 注意事项: 尽管数据集能够提供准确的缺陷标注示例,但它不保证使用这些数据训练出的模型的准确度和性能。因此,本数据集主要用于提供准确标注的训练材料,用于工业缺陷检测模型的开发与训练。研究者和工程师在使用数据集进行模型训练时,需自行评估模型效果并调整模型参数。 对于深度学习领域的研究者和工程师而言,该数据集是一个宝贵的资源,能够辅助他们在铝片表面缺陷检测领域进行算法开发与优化。随着深度学习技术的不断进步,未来将能够实现更加高效、准确的铝片表面缺陷检测,进一步推动工业生产自动化和智能化进程。
2025-06-19 20:59:27 769KB 数据集
1
这是一个垃圾分类数据集,格式为YOLO格式,14750张图像数据+14750张标签数据。YOLOv5。 垃圾类别: 一次性快餐盒 书籍纸张 充电宝 剩饭剩菜 包 垃圾桶 塑料器皿 塑料玩具 塑料衣架 大骨头 干电池 快递纸袋 插头电线 旧衣服 易拉罐 枕头 果皮果肉 毛绒玩具 污损塑料 污损用纸 洗护用品 烟蒂 牙签 玻璃器皿 砧板 筷子 纸盒纸箱 花盆 茶叶渣 菜帮菜叶 蛋壳 调料瓶 软膏 过期药物 酒瓶 金属厨具 金属器皿 金属食品罐 锅 陶瓷器皿 鞋 食用油桶 饮料瓶 鱼骨 在人工智能领域,目标检测技术是计算机视觉的重要组成部分,它的任务是在图像中识别并定位出一个或多个目标,并给出每个目标的类别。YOLO(You Only Look Once)是一种流行的目标检测算法,以其速度快、准确率高、易于训练和部署等优点被广泛应用。在本文中,我们关注的是一套特别的数据集,它专注于垃圾分类的任务,即通过机器学习模型对各种垃圾类别进行识别和分类。 该数据集包含了14750张图像数据及其对应的标签数据,共涉及29种垃圾类别。这些类别包括了日常生活中常见的废弃物,如一次性快餐盒、书籍纸张、充电宝、剩饭剩菜等。此外,还包括了多种塑料制品、电子废弃物、玻璃和金属物品,以及厨余垃圾等。每一张图像都标注有相应的垃圾类别,这些图像和标签共同构成了YOLO格式的数据集,适用于训练YOLOv5版本的目标检测模型。 YOLO格式的数据集要求每张图像对应一个文本文件,其中记录了图像中每个垃圾目标的位置信息(包括中心点坐标、宽度和高度)以及垃圾的类别。在训练过程中,YOLO算法会利用这些标注信息,通过反向传播的方式不断优化网络参数,以达到对垃圾图像准确分类和定位的目的。 在垃圾分类的场景下,使用YOLO算法及其数据集具有以下几个优势:YOLO算法的检测速度非常快,可以实现实时检测,这对于即时分类垃圾、提高垃圾处理效率具有重要意义;该算法的检测精度高,能够有效识别不同垃圾的目标,包括那些形状、颜色相似的目标;再者,YOLO模型的部署简单,可以轻松集成到各种智能设备中,如智能垃圾桶、垃圾回收机器人等,为垃圾分类和资源回收提供技术支持。 该垃圾分类数据集对于推动智能垃圾分类和环保事业的发展具有重大价值。通过这套数据集的训练,可以使智能系统更加精准地识别和分类不同类型的垃圾,从而为城市垃圾管理、资源循环利用等环保措施提供可靠的技术支撑。同时,随着技术的不断进步,这套数据集还可以进一步扩大和更新,以覆盖更多垃圾类别和更复杂的现实场景,进一步提升垃圾分类的智能化水平。
2025-06-19 10:50:40 840.15MB YOLO 垃圾分类
1
知识点生成: 目标检测作为计算机视觉领域的一个核心分支,主要任务是识别图像中的感兴趣对象,并确定这些对象的位置。玉米幼苗数据集8530张YOLO+VOC(已增强)就是为了解决这一问题而设计的。该数据集采用了VOC格式和YOLO格式的标注标准,其中YOLO格式是一种流行的实时目标检测算法。数据集包含8530张标注清晰的玉米幼苗图片,每张图片都配有一个对应的.xml文件进行标注。 数据集的格式设计使得它能够适应多种机器学习框架,而采用的图片增强技术则能显著提高模型训练时的泛化能力。具体来说,数据集包含三个文件夹,分别是存储图片的JPEGImages文件夹、存储标注信息的Annotations文件夹和存储标注框坐标的labels文件夹。JPEGImages文件夹中存放了8530张.jpg格式的图片, Annotations文件夹包含了与图片一一对应的8530个.xml标注文件,而labels文件夹则包含了8530个.txt标注文件。所有标注文件中的标签数量为1,即仅包含一种标签:“Maize”,代表玉米。 每张图片中,玉米幼苗的矩形框数量共计为12650个。标注框数目的增加,意味着数据集为模型提供了更多关于玉米幼苗在各种环境下的视觉信息,这有助于训练更加精确的模型。标签形状采用矩形框,是因为矩形框在计算机视觉中是最常用且适合的标注形式,能够有效地框选目标对象,并且计算量相对较小。 在图像处理方面,数据集中的图片清晰度高,分辨率为高清像素,可以进一步增强模型对玉米幼苗的识别精度。由于图片经过增强处理,这不但增加了数据集的多样性,而且有助于减少模型在实际应用中遇到的过拟合问题。数据集的图片增强主要涵盖了对色彩、亮度、对比度等方面的调整,以模拟更广泛的现实场景。 值得注意的是,虽然数据集提供了丰富的标注信息和高质量的图片资源,但它并不对训练得到的模型精度或权重文件作出任何保证。数据集只承诺提供准确且合理的标注。对于使用者而言,需要在模型设计、训练和验证等后续步骤中投入更多的工作,以确保得到一个性能优良的模型。 此外,数据集提供了标注示例和图片概览,以帮助研究人员和开发者更好地理解数据集的结构和标注方式。用户可以通过观察标注示例来学习如何识别和标注玉米幼苗,以及如何使用labels文件夹中的.txt文件来训练YOLO模型。 对于希望在农业领域应用目标检测技术的研究者和开发者来说,这个数据集提供了一个很好的起点。通过深入研究和合理使用该数据集,可以期待开发出能有效应用于农业生产和作物管理的先进图像识别系统。
2025-06-19 01:11:03 6.18MB 数据集
1
GTSDB数据集,即德国交通标志数据集,是专门为交通标志检测任务设计的,具有多个类别的数据集。GTSDB数据集在YOLO(You Only Look Once)格式中已被成功应用,表明它可以与YOLO模型配合使用,用于实时目标检测。YOLO是一种流行的计算机视觉算法,以其速度和准确性在实时目标检测任务中备受青睐。数据集包含43个不同的交通标志分类,涵盖了德国道路上常见的几乎所有类型标志。 在处理此数据集时,YOLO模型需要在训练过程中识别和标记这些43种类别的交通标志。模型在检测阶段能够快速识别出图像中的交通标志,并确定其类别。这使得YOLO格式的GTSDB数据集非常适合于实时交通标志检测系统,这类系统在自动驾驶和驾驶辅助系统中具有广泛的应用前景。 GTSDB数据集之所以重要,是因为它为研究人员提供了一个良好的起点来研究和改进交通标志识别技术。数据集的质量直接影响到模型训练的效果,高质量的数据集可以提高模型识别的准确性和鲁棒性。此外,由于不同国家和地区的交通标志可能有所差异,德国交通标志数据集的发布也为其他国家的研究者提供了借鉴和参考,有助于推动交通标志识别技术的国际交流和合作。 在机器学习和深度学习领域,数据集的格式对于算法的训练和测试至关重要。YOLO格式的数据集要求标注信息以特定的结构存储,以便于算法快速读取和处理。这样的格式化数据集使得研究者能够更加便捷地进行实验和算法的迭代优化。GTSDB数据集的YOLO格式化版本,无疑降低了研究人员在此领域进行实验的门槛,使得交通标志检测技术的研究可以更加专注于算法本身,而非数据预处理的繁琐工作。 由于GTSDB数据集包含了真实的交通标志图像,因此它也为模拟实际交通环境提供了可能。在自动驾驶技术的研发中,模拟真实的交通环境至关重要,它可以帮助研究者更好地测试和评估他们的系统在复杂环境下的性能。而且,GTSDB数据集的多样性和丰富性确保了训练出的模型具有更好的泛化能力,能够适应不同的道路和光照条件。 GTSDB数据集的YOLO格式化版本不仅为交通标志检测研究提供了高质量的数据资源,而且极大地促进了相关领域的研究进展。随着自动驾驶技术的不断进步,交通标志识别作为其中的关键一环,其重要性不言而喻。未来,随着更多研究的深入和技术的发展,我们可以预见交通标志检测将变得更加精确和高效,进而推动整个自动驾驶技术的成熟和普及。
2025-06-18 12:45:19 95.38MB
1
非机动车未带安全帽检测数据集是一套完整的图像数据集,主要用于机器学习和深度学习模型的训练和验证,特别是用于计算机视觉领域中的目标检测和识别任务。该数据集采用Pascal VOC格式和YOLO格式,为研究者和开发者提供了便利,便于他们利用这些格式训练模型和进行算法的开发。 VOC格式是一种广泛使用的数据集格式,它由图片文件、XML格式的标注文件和图片信息构成。每张图片都对应一个XML文件,XML文件中详细描述了图片中的对象信息,包括对象的位置和类别等。YOLO格式则是另一种适合实时目标检测系统使用的数据标注格式,它通常包含文本文件,每个文本文件中记录了对应图片中检测到的所有对象的坐标和类别。 本数据集包含了1000张jpg格式的图片,每张图片都包含一个XML文件和一个YOLO格式的文本文件。数据集的图片分辨率统一为1280x720,这有助于保证了数据的一致性和可用性。图片内容涉及了四个类别,分别是:未戴安全帽的行人、戴安全帽的行人、摩托车以及未戴安全帽的非机动车。这些类别分别对应了不同的安全检测需求,例如,保障非机动车骑行者的安全和规范。 在数据集中,每个类别都有一定数量的标注框,用于界定图像中相应类别的目标。例如,“未戴安全帽”的类别框数为1039,而“摩托车”的类别框数为1792。总框数达到4652,这表明数据集对不同场景和目标的覆盖较为全面。 数据集的标注工作使用了名为labelImg的工具完成。labelImg是一个流行的开源标注工具,能够快速地在图片上绘制矩形框,并附上类别标签。这样的标注方式不仅保证了标注的准确性,而且操作简单,适合快速进行数据标注。 需要特别注意的是,数据集的提供者明确表示,使用该数据集所训练出的模型或权重文件的精度无法得到保证。因此,使用该数据集的用户需要自行进行精度的验证和模型调优。 数据集的下载地址也已经提供,这方便用户直接获取资源。数据集的获取和使用过程中,需要注意遵循数据集的使用协议和版权声明,确保合法合规地使用数据。 本数据集是专门针对非机动车安全帽佩戴情况的检测而设计,提供了丰富的标注信息和较高的标注精度。这对于相关领域研究者和开发者的模型训练和研究工作具有非常重要的价值。
2025-06-17 19:56:27 940KB 数据集
1
番茄叶片病害数据集是一个专为机器学习和深度学习领域的目标检测任务设计的数据集,包含有13940张高清晰度的jpg格式图片。这些图片被精心标注,覆盖了9种不同的番茄叶片病害类别,形成了一个丰富的视觉信息源。数据集遵循两种主要的标注格式:Pascal VOC格式和YOLO格式,却没有包含分割路径的txt文件。 Pascal VOC格式是由Pascal Visual Object Classes挑战赛发展而来的标注格式,广泛应用于计算机视觉任务中。每个图片对应的VOC格式包含一个xml文件,该文件详尽地记录了图片中每一个目标的类别和边界框信息。YOLO格式则是一种流行的实时目标检测系统格式,它通过纯文本文件记录目标的位置和类别,方便快速的训练和部署。 在13940张图片中,每张图片都配有对应的VOC格式xml标注文件和YOLO格式txt标注文件,每张图片可能包含一个或多个病害的标注框。整个数据集共计有13946个标注框,意味着部分图片中可能包含多个病害实例。这些病害实例被清晰地标注,涵盖了从早期斑点病(Early Blight)、健康叶片到晚期斑点病(Late Blight)、叶蝉(Leaf Miner)、叶霉病(Leaf Mold)、花叶病毒(Mosaic Virus)、叶斑病(Septoria)、蜘蛛螨(Spider Mites)到黄叶卷曲病毒(Yellow Leaf Curl Virus)等9个类别。 每个病害类别中的标注框数量不等,显示了该病害在整体数据集中的发生频率和重要性。例如,晚期斑点病的框数达到了6878,显示出它在种植场的普遍性和对叶片影响的严重性,而早期斑点病的框数较少,为4356,可能意味着其在检测过程中相对易于识别和控制。各个病害的标注框总数达到了49205,这为机器学习模型提供了大量实例,有助于模型更准确地学习并识别不同病害。 为了确保数据集的质量,该数据集使用了广泛认可的标注工具labelImg进行标注。它是一个流行的图像标注软件,允许用户方便地在图片上绘制矩形框,并为其分配类别。这种标注方式简单直观,能够有效地提升标注的准确性,从而在模型训练过程中提供更可靠的数据支持。 该数据集的获取地址已经提供,研究者和开发者可以通过访问该地址下载数据集,进而开展各种机器学习算法的研究与实践,特别是在农业自动化和植物病害检测方面。准确的病害识别不仅对提高作物产量有积极作用,而且对于精确农业的实施也具有重要意义。通过机器学习模型的辅助,农户和农业技术人员可以更及时地识别病害,采取相应措施,减少经济损失。
2025-06-17 19:05:23 2.3MB 数据集
1
车站异常行为检测数据集是为了解决在车站场景下,如何利用计算机视觉技术自动识别和检测异常行为的问题。此类研究在提升车站安全管理、预防犯罪行为、以及提升公共安全方面具有重要的应用价值。本数据集采用Pascal VOC格式和YOLO格式结合的方式,为研究者和开发者提供了2293张图片及其对应的标注信息,涵盖了包括正常行为在内的4个类别。 VOC格式通常指的是Pascal Visual Object Classes格式,这是一种广泛应用于目标检测和分类任务的标注格式,其包括图片、标注文件(XML格式)和分类文件等,每个标注文件详细记录了每个目标的位置和类别信息。而YOLO(You Only Look Once)格式的标注文件通常是txt文本文件,以特定格式记录了目标的类别和边界框坐标信息,适合YOLO模型的训练使用。 在本数据集中,包含了4个主要的标注类别,分别是“斗殴”、“损毁财物”、“摔倒”和“正常”。这些类别是车站异常行为检测中最常见的几类行为,具有很高的代表性。每个类别都通过矩形框的形式进行标注,矩形框内即为目标区域。例如,“斗殴”类别下标注了794个矩形框,表示数据集中共有794张图片包含了斗殴行为。 标注工具选择了labelImg,这是一个流行的图像标注工具,支持矩形框标注,非常适合本数据集的需求。标注过程中,工作人员会仔细分析图片内容,识别出不同类别的行为,并用矩形框准确地标出这些行为的位置。 在总计5216个标注框中,不同类别的框数存在差异,其中“摔倒”类别的框数最多,达到1334个,显示出数据集中摔倒这一行为出现的频率较高,可能是因为车站人流密集,摔倒的风险相对较大。而“损毁财物”类别的框数最少,只有86个,可能是因为这类行为本身发生的频率较低,或者是因为其在监控视频中不易被捕捉到。 值得注意的是,本数据集提供的仅仅是经过准确标注的图片数据,不包含任何用于模型训练的权重文件,也不对使用该数据集训练得到的模型或权重文件精度作出任何保证。这是因为在机器学习和深度学习中,模型的表现不仅仅取决于数据集的质量,还与模型的架构、训练过程、超参数设置等因素有关。 此外,数据集还提供了一部分图片的预览和标注例子,便于研究者和开发者直观了解数据集的质量和标注风格。数据集的提供者鼓励用户在使用数据集时遵守相关法律法规,尊重数据隐私和版权,合理合法地利用数据集进行研究和开发活动。
2025-06-13 10:34:02 1.02MB 数据集
1
随着人工智能技术的快速发展,深度学习在医学图像分析领域展现出巨大的应用潜力。在本项目中,我们关注的是骨龄检测识别系统的开发,该系统基于深度学习框架PyTorch实现,采用Pyside6进行图形用户界面设计,而YOLOv5模型则作为主要的骨龄检测识别算法。YOLOv5是一种先进且快速的对象检测算法,它能够实时高效地识别和定位图像中的多个对象。在本系统的构建过程中,YOLOv5模型将被训练用于识别儿童手腕X光图像中的骨骼特征,并据此推断出相应的骨龄。由于骨龄是评估儿童和青少年生长发育的重要指标,因此该系统在儿科医学诊断中具有重要的应用价值。 在本系统的开发过程中,项目使用了多个文件来维护和说明。其中,CITATION.cff文件用于规范引用格式,以便其他研究者可以准确引用本项目的研究成果。.dockerignore、.gitattributes、.gitignore文件则涉及项目版本控制和容器配置,这些文件用于设置哪些文件应被版本控制系统忽略或特殊处理。tutorial.ipynb文件是一个交互式的Python笔记本,可能包含了使用本系统进行骨龄检测识别的教程或示例代码,这对学习和使用本系统具有实际指导意义。 此外,项目中还包括了一个图片文件555.jpg,虽然具体内容未知,但根据命名推测,它可能被用作YOLOv5模型训练或测试中的样本图像。LICENSE文件包含了本项目所采用的开源许可证信息,它对项目如何被使用、修改和重新分发做了规定。README.zh-CN.md和README.md文件分别为中文和英文版本的项目说明文档,它们提供了关于项目的详细信息和使用指南。CONTRIBUTING.md文件用于指导其他开发者如何为本项目贡献代码,这是开源文化的重要组成部分。 本项目是一个高度集成的系统,它将深度学习、图像识别和友好的用户界面完美结合,为医学影像分析领域提供了一种新颖的解决方案。通过使用YOLOv5模型,系统在骨龄检测方面展现出了高效的性能和准确的识别效果。与此同时,系统的设计充分考虑了实用性、可扩展性和开放性,它不仅能够满足专业人士的需求,同时也为开发者社区提供了一个可供贡献和改进的平台。
2025-06-10 21:39:43 406.37MB python 图像识别 yolo 深度学习
1