全球气象AI挑战赛是2018年由阿里云天池平台和IEEE国际数据挖掘大会(ICDM)共同主办的一项竞赛,旨在推动人工智能在气象预测领域的应用。参赛者需要利用机器学习和深度学习技术来预测未来一段时间内的天气状况,提高气象预报的准确性。在这个压缩包文件“Global-AI-Challenge-on-Meteorology-master”中,包含了参赛者可能用到的各种资源和代码示例。 1. **Python编程**:比赛主要使用的编程语言是Python,这是目前数据科学和机器学习领域最广泛的语言。Python拥有丰富的库和框架,如Pandas用于数据处理,Numpy进行数值计算,Matplotlib和Seaborn用于数据可视化,以及TensorFlow、Keras和PyTorch等用于构建和训练深度学习模型。 2. **数据预处理**:在气象预测中,首先需要对收集到的气象数据进行预处理,包括清洗缺失值、异常值检测、时间序列归一化等步骤。Pandas库在数据预处理中起到关键作用,可以方便地读取、合并和操作数据。 3. **特征工程**:参赛者需要从原始数据中提取有意义的特征,这可能涉及时间序列分析、滑动窗口操作,以及基于气象学知识构造新特征。例如,可以计算过去几小时的平均气温、湿度、风速等,以捕捉天气变化的趋势。 4. **机器学习模型**:传统的机器学习模型如线性回归、决策树、随机森林、支持向量机等可能用于基础预测。然而,由于气象预测的复杂性,更可能采用深度学习模型,如循环神经网络(RNN)、长短时记忆网络(LSTM)或卷积神经网络(CNN)来捕获时间序列数据的动态模式。 5. **模型训练与优化**:参赛者需要使用交叉验证来评估模型性能,并通过调整超参数或采用网格搜索、随机搜索等方法来优化模型。此外,集成学习策略,如bagging和boosting,也可能被用于提高预测准确度。 6. **模型评估**:常见的评估指标可能包括均方误差(MSE)、平均绝对误差(MAE)、决定系数(R^2)等。对于时间序列预测,有时还会使用像MASE(平均绝对误差标准化)或SMAPE(对数平均绝对百分比误差)这样的特定指标。 7. **数据并行处理与分布式计算**:面对大规模气象数据,可能需要利用Apache Spark或Dask等工具进行分布式计算,以加快数据处理和模型训练速度。 8. **模型解释性**:虽然黑盒模型如深度学习通常预测精度更高,但理解模型如何做出预测也很重要。可解释性工具如SHAP(SHapley Additive exPlanations)和LIME(Local Interpretable Model-agnostic Explanations)可以帮助理解模型预测背后的特征重要性。 9. **实验管理**:使用版本控制工具如Git进行代码版本管理,确保实验可重复性。同时,利用如Google Colab或Jupyter Notebook等环境进行交互式编程和文档编写,便于团队协作和结果展示。 "Global-AI-Challenge-on-Meteorology"提供的代码示例涵盖了从数据处理、模型构建到模型评估的完整流程,为参赛者提供了一个实践和学习气象预测AI的平台。通过这个挑战,参赛者不仅可以提升自己的编程技能,还能深入理解如何运用AI技术解决实际问题。
2025-06-23 12:01:33 12KB Python
1
雪浪制造AI挑战赛—视觉计算辅助良品检测 test_a 952 test_b 953
2024-05-28 21:08:48 50KB Python开发-机器学习
1
阿里天池 全球城市计算AI挑战赛
2022-02-21 17:07:32 964.82MB 人工智能 阿里云 云计算
1
ICRA2020-JLU-TARS_GO-决定 吉林大学吉甲大师团队-AI挑战赛决策部分开源代码
2021-11-12 14:51:25 5.05MB 系统开源
1
本文研究的数据集来源于全球 AI 挑战赛(AI Challenger)的第二个赛道——细粒度用户评论情感分析。该比赛要求参赛者对互联网平台上用户的在线评论文本进行分析并判断文中是否提及 6 个目标的 20 个方面。如果方面被提及,则需要判断该方面所对应的情感极性。接下来通过几张表来详细地介绍数据集的情况。
1
subway_traffic_forecast-tianchi 萌新开源,大佬些多给点指导。 天池全球城市计算AI挑战赛-地铁人流量预测, A榜22/2319,该代码是A榜代码,如果能有所收获,老铁右上角,star一下,感谢! 队友:buger,taoberica、selina雪,感谢鱼佬baseline, A榜代码有部分是借鉴鱼佬开源代码, 没能进入决赛也就不开源淘汰赛的代码了。 数据集下载: 链接: 提取码: arse 比赛链接; 目前还有一些未来得及验证的想法,有兴趣的大佬些可以试试看。 a.将间隔十分钟改为间隔五分钟,相对增加了数据量 b.将shfit后的前三天删掉,因为shift后前三天引入了很多0 c.除了shift最近三天的策略,还可以试试shift最近两天+上一周相对应的week的数据 d.最开始也试了lgb模型,效果比xgb差点,可以将xgb和lgb采用blending
2021-06-26 16:15:41 6KB 附件源码 文章源码
1
Code for Fine-grained Sentiment Analysis of User Reviews of AI Challenger 2018
2021-03-30 13:53:08 105KB Python开发-机器学习
1