本文档提供了一个详细的步骤指导来完成一个基于Python的图像识别任务,重点在于如何利用TensorFlow 和 Keras库实现一个针对CIFAR-10数据集的卷积神经网络(CNN),涵盖从环境配置到结果可视化在内的各个关键环节。文中包含了具体的代码样例以及关于数据预处理、模型构建与调整、损失函数选择等方面的技术要点讲解。 在当今信息高度发达的时代,计算机视觉和深度学习技术已经逐渐渗透到我们生活的方方面面,其中图像识别作为一项重要技术,正在受到越来越多的关注。图像识别领域广泛应用于智能监控、医疗影像分析、自动驾驶车辆以及社交媒体等领域。卷积神经网络(CNN)作为深度学习中的一种重要模型,因其优异的性能在图像识别领域中大放异彩。 在本文中,我们详细探讨了如何使用Python语言和TensorFlow、Keras框架来实现一个简单的卷积神经网络,用以对图像数据进行分类。我们将重点放在对CIFAR-10数据集的处理上,该数据集包含了60000张32x32大小的彩色图像,覆盖了10个不同的类别。通过这一过程,我们将从零开始构建一个深度学习模型,并在实战中解决一系列关键问题,比如数据预处理、模型构建与调整、损失函数选择以及模型评估和优化等。 为了实现上述目标,我们首先需要确保环境配置正确。具体来说,我们需要在计算机上安装Python,并安装TensorFlow、NumPy和Matplotlib这几个重要的库。在本文档中,作者提供了必要的Python库安装命令,以便于读者可以顺利完成安装过程。 之后,文档中提供了一段完整的Python代码来构建CNN模型。在这段代码中,首先导入了TensorFlow以及Keras中的一些必要模块。接着,我们加载CIFAR-10数据集,并将图像数据的像素值归一化,以提高模型训练的效率。在模型定义阶段,通过建立包含卷积层、池化层和全连接层的顺序模型(Sequential),我们构建了一个基础的CNN结构。通过这种方式,我们能够有效地提取图像特征,并进行分类预测。 在模型编译阶段,我们采用了Adam优化器以及稀疏分类交叉熵作为损失函数,这是因为我们处理的是分类问题,需要对不同类别的概率分布进行建模。编译模型后,我们使用fit方法对模型进行训练,并利用验证数据集来对模型进行评估。通过这种方式,我们可以监控模型在训练集和验证集上的表现,避免过拟合或欠拟合的问题。 训练完成后,我们对模型进行评估,这一步通常涉及在独立的测试集上对模型的性能进行检验。我们利用Matplotlib绘制了训练和验证的准确率和损失图表,这有助于我们直观地理解模型在训练过程中的表现,并据此进行进一步的调整和优化。 整体而言,本文档的指导和代码示例为我们提供了一条清晰的路径,通过这条路径我们可以利用Python和深度学习库,构建一个简单的卷积神经网络,并对图像进行分类。这不仅为初学者提供了一个入门级的项目,对于希望进一步深入了解图像识别和CNN实现的读者,同样具有重要的参考价值。
2025-06-15 15:20:39 73KB 机器学习 TensorFlow Keras 图像识别
1
这是一个手把手教你用 Tensorflow 构建卷机网络(CNN)进行图像分类的教程。教程并没有使用 MNIST 数据集,而是使用了真实的图片文件,并且教程代码包含了模型的保存、加载等功能,因此希望在日常项目中使用 Tensorflow 的朋友可以参考这篇教程。 概述 --- • 代码利用卷积网络完成一个图像分类的功能 • 训练完成后,模型保存在 model 文件中,可直接使用模型进行线上分类 • 同一个代码包括了训练和测试阶段,通过修改 train 参数为 True 和 False 控制训练和测试 数据准备 --- 教程的图片从 Cifar 数据集中获取,download_cifar.py 从 Keras 自带的 Cifar 数据集中获取了部分 Cifar 数据集,并将其转换为 jpg 图片。 默认从 Cifar 数据集中选取了 3 类图片,每类 50 张图,分别是 • 0 => 飞机 • 1 => 汽车 • 2 => 鸟 图片都放在 data 文件夹中,按照 label_id.jpg 进行命名,例如 2_111.jpg 代表图片类别为 2(鸟),id 为 111。
2023-03-06 17:25:53 224KB Tensorflow 卷积网络 CNN 图像分类
1
大家好,今天给大家带来一个卷积神经网络(CNN)数学图形识别项目(简单入门版),这个是人工智能解题的基础,机器首先通过题目识别出题目中的文字和图形,读懂题目的含义,这个是个相对复杂的过程。就在今年的1月4日,麻省理工学院等四所高校的联合研究团队,发布了一项最新研究成果:他们开发了一个神经网络,可以解答出微积分、线性代数等大学数学题。不管是要求计算数值,还是写方程式,或者画出函数图形,都能轻易解答,正确率达到了100%。要知道,在短短几个月前,人工智能解答类似的题,最高正确率不到10%。
2022-12-20 15:27:49 5.96MB CNN 图像分类
1
有监督学习,图像分类,训练预测主程序,图像为手写数据
2022-10-31 10:39:08 207KB matlab CNN cnn图像 cnn预测
1
利用pytorch 搭建猫狗公鸡图片分类网络,附带训练图片1200张,模型下载可以直接在cpu电脑上训练预测,代码包含模型的保存和可视化,学习率调整等基础知识,适合新手入门
2022-07-10 21:07:05 554.92MB pytorch CNN 图像分类
CNN图像分类pdf讲义超详细
2022-04-06 23:20:59 14.74MB cnn 图像分类
1
文章目录TensorFlow2 学习——CNN图像分类1. 导包2. 图像分类 fashion_mnist3. 图像分类 Dogs vs. Cats3.1 原始数据3.2 利用Dataset加载图片3.3 构建CNN模型,并训练 TensorFlow2 学习——CNN图像分类 1. 导包 import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf from sklearn.preprocessing import StandardScaler from sklear
2022-03-24 11:39:57 98KB ens low ns
1
CNN实现对FashionMNIST图像分类 卷积神经网络相对于全连接神经网络的优势: 参数少 -> 权值共享 因为全连接神经网络输入的图片像素较大, 所以参数较多 而卷积神经网络的参数主要在于核上, 而且核的参数可以共享给其他通道 全连接神经网络会将输入的图片拉直, 这样就会使图片损失原来的效果,从而导致效果不佳 而卷积神经网络不会将图片拉直,用步长去移动核 可以手动选取特征,训练好权重,特征分类效果比全连接神经网络的效果好 CNN过程: conolution层: 实现对feature map局部采样(相似于感受野) pooling层: 增加感受野 dense层: 也就是全连接层 大概思路
2022-01-16 17:30:41 141KB relu 分类 卷积
1
cnn 图像分类PPTcnn 图像分类PPTcnn 图像分类PPTcnn 图像分类PPTcnn 图像分类PPTcnn 图像分类PPTcnn 图像分类PPTcnn 图像分类PPTcnn 图像分类PPTcnn 图像分类PPT
2021-12-21 12:41:08 4.79MB cnn 分类
1
迁移学习CNN图像分类模型 - 花朵图片分类-附件资源
2021-11-28 18:46:31 106B
1