二阶RC等效电路模型参数在线辨识与多工况下的SOC、SOP联合估计——基于FFRLS、EKF算法的Simulink仿真研究,二阶RC等效电路模型参数在线辨识与多工况下的SOC和SOP联合估计——基于FFRLS、EKF算法Simulink仿真实现,二阶RC等效电路模型参数在线辨识与SOC、SOP联合估计,适应多工况。 【二阶RC: FFRLS+EKF+SOP simulink仿真模型】 ,二阶RC等效电路模型参数;在线辨识;SOC联合估计;SOP联合估计;多工况适应;FFRLS+EKF+SOP;simulink仿真模型,二阶RC模型参数在线辨识与SOC、SOP联合估计的EKF-SOP算法研究
2025-12-19 15:53:14 2.22MB scss
1
基于无迹扩展卡尔曼滤波的路面附着系数估计系统:Matlab Simulink源码与建模指导,路面附着系数估计_无迹扩展卡尔曼滤波(UKF EKF) 软件使用:Matlab Simulink 适用场景:采用无迹 扩展卡尔曼滤波UKF进行路面附着系数估计,可实现“不变路面,对接路面和对开路面”等工况的路面附着系数估计。 产品simulink源码包含如下模块: →整车模块:7自由度整车模型 →估计模块:无迹卡尔曼滤波,扩展卡尔曼滤波 包含:simulink源码文件,详细建模说明文档,对应参考资料 适用于需要或想学习整车动力学simulink建模,以及simulink状态估计算法建模的朋友。 模型运行完全OK(仅适用于MATLAB17版本及以上) ,路面附着系数估计;无迹扩展卡尔曼滤波(UKF EKF);Matlab Simulink;7自由度整车模型;状态估计算法建模;模型运行完全OK。,MATLAB Simulink:基于无迹扩展卡尔曼滤波的路面附着系数估计模型
2025-12-19 10:14:49 170KB 柔性数组
1
内容概要:本文深入介绍了STM32电机库中的龙伯格观测器及其开源无感FOC全功能版本。首先概述了STM32电机库的功能和优势,接着详细解释了龙伯格观测器的工作原理,即通过电流和电压信息实时估计电机的转子位置和速度。随后,重点讲解了集成龙伯格观测器的无感FOC版本,涵盖前馈控制、弱磁控制和三段式启动三大核心技术。最后,通过一段典型代码演示了如何利用STM32电机库实现电机控制的具体步骤。 适合人群:对电机控制感兴趣的电子工程师、嵌入式开发者和技术爱好者。 使用场景及目标:适用于需要深入了解STM32电机库和龙伯格观测器的应用场景,特别是那些希望掌握无感FOC技术并应用于实际项目的人群。目标是帮助读者理解并实现高效的电机控制系统。 其他说明:文中提供的代码片段带有详细的中文注释,便于初学者理解和上手。同时,强调了代码结构和注释的重要性,确保代码的易读性和可维护性。
2025-12-18 17:09:53 1.02MB
1
本文详细介绍了如何使用STM32单片机通过定时器输出PWM波控制JGB37-520减速直流电机,并利用霍尔编码器接口实现电机测速功能。文章包含完整的实验接线图、原理图及代码实现,涉及主函数、按键控制、PWM生成、电机驱动、OLED显示、编码器捕获和定时器初始化等模块。通过按键可调节电机转速,并在OLED上实时显示PWM占空比和电机转速。最后总结了使用STM32定时器输出比较和输入捕获功能的心得体会,为直流电机控制与测速提供了完整的解决方案。 在深入探究STM32单片机在电机控制领域的应用过程中,我们不难发现,以PWM波形控制为基础的直流电机调速方法十分关键。PWM波形通过定时器输出,能够调节电机的速度,实现精确控制。本文不仅详细介绍了这一控制过程,还涉及了霍尔效应编码器的应用,该编码器用于检测电机的转速,提供实时反馈。 在文章中,首先通过实验接线图和原理图展示了整个电路的构成。随后,详细讲解了包括主函数在内的各个模块的代码实现,这些模块包含了按键控制、PWM生成、电机驱动、OLED显示、编码器捕获以及定时器初始化等功能。按键控制部分允许用户通过物理按键改变电机的转速,而OLED显示则将电机运行的实时信息,如PWM占空比和电机转速展现给用户,这为实时监控和调试提供了极大的便利。 此外,文章还涵盖了PWM控制和编码器测速的代码实现细节,这些代码是实现电机平稳运行和准确测速的基石。通过定时器,STM32能够精准地输出PWM波形,并通过霍尔编码器接口,实现对电机转速的准确测量。这种结合了PWM波形控制和霍尔效应编码器测速的方法,为直流电机的应用提供了稳定而精确的控制策略。 文章的最后部分,作者分享了在使用STM32的定时器输出比较和输入捕获功能时的心得体会。这些心得不仅来自于实践的积累,也是对整个电机控制系统深入理解的体现。总结这些内容,无疑为直流电机控制与测速的实践活动提供了宝贵的经验和知识。 文章内容详实,结构清晰,对于希望了解如何使用STM32单片机控制直流电机,以及如何通过霍尔编码器进行测速的工程师和技术人员而言,无疑是一份不可多得的参考资料。通过本文的介绍和代码示例,读者可以快速掌握利用STM32单片机进行电机控制和测速的方法,并能够在实际项目中应用这些知识。
2025-12-18 12:34:02 10KB
1
纯电动双电机水源热泵三蒸热管理系统Amesim仿真模型:电机电池冷却与余热回收的集成控制方案,《某双电机水源空气源热泵纯电动车三蒸热管理系统Amesim仿真模型及其Statechart控制逻辑研究》,某纯电动车(双电机、水源空气源间接式热泵)整车三蒸热管理系统Amesim仿真模型,电机电池冷却、电池加热、乘客舱空调,带余热回收和空气源热泵 带statechart状态机控制,提供热管理系统图以及控制逻辑框架,零部件标定完成且包含必须的曲线 ,核心关键词:纯电动车; 双电机; 水源空气源间接式热泵; 三蒸热管理系统; Amesim仿真模型; 电机电池冷却; 电池加热; 乘客舱空调; 余热回收; 空气源热泵; statechart状态机控制; 热管理系统图; 控制逻辑框架; 零部件标定; 曲线。,纯电动双电机热管理Amesim仿真模型:热回收与高效能管理
2025-12-17 15:46:59 3.92MB 数据结构
1
内容概要:本文详细介绍了三相永磁同步电机的两种直接转矩控制(DTC)模型:传统DTC和基于滑模控制改进的DTC。文中首先解释了DTC的基本概念,然后分别阐述了这两种模型的具体构建过程,包括磁链和转矩计算、误差计算以及电压矢量选择等环节。接着,作者通过一系列仿真实验展示了两者的性能差异,尤其强调了改进模型在转矩脉动、转速响应和平滑性方面的显著优势。最后,提供了部分关键代码片段,帮助读者理解和实现这些模型。 适合人群:电机控制系统的研究人员、工程师和技术爱好者,尤其是那些对永磁同步电机的直接转矩控制感兴趣的群体。 使用场景及目标:适用于希望深入了解并优化三相永磁同步电机控制系统的专业人士。目标是通过对比实验,掌握传统DTC和滑模改进DTC的工作原理及其优劣,以便在实际应用中做出更好的选择。 其他说明:文章不仅提供了理论分析,还包括具体的代码实现细节,有助于读者将所学应用于实践中。同时,文中提到的一些技巧和经验对于解决实际工程问题也有很大帮助。
2025-12-17 14:58:43 120KB
1
STM32系列微控制器在嵌入式领域广泛应用,特别是对于电机控制,如无刷直流(BLDC)电机的驱动。本教程将详细讲解如何使用STM32F103进行BLDC电机驱动,并通过STM32F407的实例进行深入探讨。我们来了解BLDC电机的基本原理。 无刷直流电机(BLDC)是现代电机技术中的一个重要组成部分,它采用电子换向而非传统的机械电刷,因此具有高效、低维护、高精度等优点。在BLDC电机的驱动中,通常需要精确控制电机的三相绕组电流,以实现连续旋转。 STM32F103是一款基于ARM Cortex-M3内核的微控制器,其丰富的GPIO接口、PWM定时器和高速处理能力使得它成为BLDC驱动的理想选择。在驱动过程中,我们需要利用STM32F103的TIM和GPIO模块来生成 PWM 信号,控制电机三相绕组的通断顺序,从而实现电机的正反转和速度控制。 "CD无刷驱动"通常指的是基于霍尔传感器的BLDC驱动方法,即通过读取霍尔传感器的信号来确定电机的位置,进而决定下一相电流的切换时机。这种驱动方式相对简单,适合初学者学习。 "stm32bldc对齐"是指电机初始位置的校准,因为在启动时,需要确保电机的第一相电流与电机的物理位置匹配。这通常通过软件算法实现,比如六步换相法(120°换相)或十二步换相法(60°换相),确保电机在正确的角度开始旋转。 "stm32bldc"是STM32对于BLDC电机控制的综合概念,涵盖从硬件连接到软件算法的整个流程。它包括了电机的初始化、霍尔传感器信号处理、PWM信号生成、电机速度检测和控制策略等内容。 STM32F407作为更高级别的STM32系列,拥有更高的处理能力和更多的外设接口,适用于更复杂的BLDC电机控制系统。例如,它可以支持更多的PWM通道,更快的ADC采样,以及更高级的控制算法,如PID调节,以实现更精细的速度和位置控制。 在提供的压缩包文件"STM32_103_BLDC"中,可能包含了相关的代码示例、电路设计图、原理图和使用说明文档,这些都是实现上述驱动技术的关键资源。通过学习这些资料,开发者可以了解如何将STM32微控制器应用于BLDC电机驱动,并逐步掌握无刷电机的控制技术。 STM32无刷电机驱动涉及到硬件电路设计、软件编程、电机控制理论等多个方面,而STM32F103和STM32F407凭借其强大的性能和丰富的资源,为开发者提供了实现高效、精确电机控制的平台。通过实践和学习,我们可以深入了解并掌握这一领域的核心技术。
2025-12-17 11:04:12 21.43MB stm32f407
1
标题中的"GD32F407VET6单片机实验程序源代码25.5V步进电机正反转"揭示了文件内容的核心,即围绕GD32F407VET6这款单片机进行的实验程序源代码设计。这个单片机是属于GD32系列的产品,由兆易创新公司生产,是一款基于ARM Cortex-M4内核的高性能微控制器,广泛应用于工业控制、消费电子和汽车电子等领域。标题还说明了该程序用于控制一个25.5V的步进电机,并且可以实现电机的正反转功能。 描述部分重复了标题的内容,没有提供额外的信息。标签“GD32F407VET6”进一步强调了这个文件与该型号单片机的紧密关联。 文件名“25.5V步进电机正反转”可能是压缩包内唯一一个文件,或者是一系列文件的名称。它清晰地表明了实验或应用的目的,即控制一个额定电压为25.5V的步进电机,并实现电机的正转和反转。这通常涉及到电机驱动器的控制、脉冲信号的生成、方向信号的设定等电子工程技能。 从这些信息中我们可以得出,该实验程序源代码涉及以下几个关键知识点: 1. GD32F407VET6单片机的特性与应用:作为基于ARM Cortex-M4内核的微控制器,它具备高性能的处理能力,丰富的外设接口,和较强的实时控制功能。了解其特性对于开发电机控制程序至关重要。 2. 步进电机的工作原理:步进电机通过接收电子脉冲信号来转动一定角度(称为“步进角”),通过控制脉冲的频率和数量可以精确控制电机的转速和转动角度。这种电机广泛用于需要精确定位的场合。 3. 电机的正反转控制:电机正反转是通过改变电机绕组中电流的方向来实现的。在程序中,这通常意味着切换控制信号的极性,从而改变电机的旋转方向。 4. 脉冲信号的生成:对于步进电机的控制来说,生成正确的脉冲序列是至关重要的。这些脉冲信号由单片机产生,并通过适当的硬件接口传输至电机驱动器。 5. 电压匹配和保护:由于实验中涉及到25.5V的电机,因此需要确保电源电压与电机规格匹配,并且单片机的I/O口能够承受相应电压,或者使用适当的电平转换电路。 6. 编程和调试:编写控制程序并进行调试是实现步进电机正反转控制的关键环节。这不仅需要对单片机的编程接口熟悉,还需要理解电机控制算法,例如加速、减速、恒速运动控制等。 由于文件信息中没有提供具体的代码细节,所以无法深入了解程序的具体实现方式,如使用的是哪种编程语言、具体的算法实现等。但可以推测,源代码中应当包含了初始化单片机的I/O端口、配置定时器生成脉冲、设置电机驱动器的方向控制信号等模块。 基于以上分析,我们可以总结出该实验程序源代码是围绕GD32F407VET6单片机展开的,用于控制一个25.5V的步进电机实现精确的正反转。这涉及到对步进电机工作原理的理解、脉冲信号的生成、电压匹配、电机方向控制以及程序的设计与调试等多个方面的知识。
2025-12-17 10:09:09 402KB
1
内容概要:本文详细比较了永磁同步电机(PMSM)的四种主要控制策略:PID控制器、传统滑模控制器、最优滑模控制器以及改进补偿滑膜控制器。每种控制方法的特点、优势和局限性通过理论分析、代码片段和仿真实验进行了深入探讨。具体来说,PID控制器上手容易但在负载突变时表现不佳;传统滑模控制器抗扰动能力强但抖振严重;最优滑模控制器通过引入李雅普诺夫函数减少抖振,但响应速度较慢;改进补偿滑膜控制器则利用扰动观测器提高了系统的稳定性和快速响应能力。 适合人群:从事电机控制系统设计的研究人员和技术工程师,尤其是对永磁同步电机有研究兴趣的专业人士。 使用场景及目标:适用于希望深入了解不同控制策略在永磁同步电机应用中的表现,选择最适合特定应用场景的控制方法。目标是在提高系统性能的同时降低成本和复杂度。 其他说明:文章提供了详细的代码片段和实验数据,帮助读者更好地理解和实践各种控制策略。此外,还给出了针对不同使用场景的具体建议,如实验室环境推荐使用改进补偿滑膜控制器,而量产设备则更适合采用最优滑模控制器。
2025-12-17 03:11:19 1.44MB
1
三相感应异步电机参数辨识的方法及其C代码实现。首先,通过PWM输出和ADC模块来辨识定子电阻,确保电流稳定并精确测量。接着,利用交流注入法和锁相环(PLL)技术辨识转子电阻和漏感,确保相位跟踪精度高。最后,通过递归最小二乘法(RLS)辨识互感并计算空载电流。文中还提供了将C代码封装为Simulink S函数的仿真方法,使仿真结果与实际硬件表现一致。此外,作者分享了将代码移植到DSP28335的经验,强调了电流采样、浮点运算优化以及中断服务程序的设计要点。 适合人群:从事电机控制系统开发的技术人员,尤其是有一定嵌入式系统开发经验的研发人员。 使用场景及目标:适用于需要对三相感应异步电机进行参数辨识的工业应用场景,如电机制造、自动化设备等领域。目标是提高电机参数辨识的准确性,缩短开发周期,提升系统的可靠性和性能。 其他说明:文中提供的代码和方法经过实际验证,在工业应用中有较高的实用价值。对于希望深入了解电机控制算法和硬件实现的读者来说,是一份非常有价值的参考资料。
2025-12-16 21:34:32 1.32MB
1