标题中的“halcon实现实时识别骰子点数”指的是使用HALCON这一机器视觉软件进行实时的骰子点数识别任务。HALCON是MVTec公司开发的一种强大的机器视觉软件,它提供了丰富的图像处理功能,包括形状匹配、模板匹配、1D/2D码识别、光学字符识别(OCR)等,广泛应用于工业自动化、质量检测等领域。 在描述中提到的“自编程序”意味着开发者已经编写了一个特定的HALCON应用程序,用于识别骰子的点数。这个程序可能包含了一系列的图像预处理步骤、特征提取和分类算法。而“详细说明见本人文章”,暗示了开发者可能有一篇详细的文档或博客,解释了程序的设计思路、实现方法以及遇到的问题和解决方案,这对于初学者来说是一份宝贵的参考资料。 “直接运行必然报错,请至少改一下视频路径”这部分说明了程序中存在一个已知问题,即默认的视频输入路径可能不正确,需要用户根据自己的实际情况进行修改。这通常涉及到HALCON中的VideoInput函数,该函数用于从摄像头或者视频文件读取图像流。用户需要确保提供的视频文件路径与实际的视频文件路径相匹配,或者如果使用的是摄像头,设置正确的设备ID。 在压缩包文件中,"4.2.avi"很可能是一个示例视频文件,用于演示骰子识别的过程。用户可以加载这个视频到HALCON的环境中,运行程序来查看识别效果。而"4.hdev"文件则可能是HALCON的工程文件,包含了整个识别项目的配置和代码。用户可以通过HALCON的开发环境HDevelop打开这个文件,进一步理解和学习代码结构。 在实际应用中,实现骰子点数识别可能涉及以下步骤: 1. 图像采集:使用VideoInput函数获取连续的骰子图像。 2. 图像预处理:包括灰度化、二值化、去噪等,提高后续处理的效果。 3. 特征提取:可能通过形状分析或边缘检测确定骰子的边界,然后局部分析每个点区域。 4. 分类识别:使用模板匹配或形状匹配方法将每个点区域与预定义的骰子点数模板进行比较,得出最接近的匹配结果。 5. 结果输出:将识别出的点数显示或记录下来。 通过这样的过程,HALCON能够实现实时的骰子点数识别,为各种自动化系统提供可靠的数据支持。对于机器视觉初学者,了解并实践这样的案例能有效提升对HALCON的理解和应用能力。
2025-11-20 20:20:41 17.61MB halcon 机器视觉
1
*1.采集图像 read_image (image, 'D:/halcon 10_study/车牌.jpg') dev_close_window() get_image_size (image, Width, Height) *获取Row1 Column1 Row2 Column2---选择区域 gen_rectangle1 (Rectangle, Height*0.1, Width*0.1, Height*0.9, Width*0.9) *显示裁剪区域(image:原始图像, Rectangle:选择的区域, Image:选择区域的图像) reduce_domain (image, Rectangle, Image) dev_open_window (0, 0, Width/2.2, Height/2, 'black', WindowHandle1) *dev_open_window_fit_image (image, Width, Height, -1, -1, WindowHandle1) dev_display (Image) *2.预处理之车牌定位,一般定位有两种,一个是Blob像素图块定位,一个是模板匹配定位,然后几何变换转正 decompose3 (image, Red, Green, Blue) *颜色空间转换Hue--色彩,Saturation--饱和度,色彩的深浅(0~100%),Intensity--色彩的亮度 trans_from_rgb (Red, Green, Blue, Hue, Saturation, Intensity, 'hsv') * trans_from_rgb (Red, Green, Blue, ImageResult1, ImageResult2, ImageResult3, 'hsv') *注意这里的颜色通道转换是为了方便图像分割,也就是车牌定位,这里用的比较通用简单的blob,在实际项目中需要考虑光照等的影响进行微调优化 *这里的二值化是进行一个blob车牌定位 threshold (Saturation, regions, 183, 255)
2025-11-19 11:38:14 298KB halcon
1
uvw对位平台是一种精密的光学定位系统,常用于半导体、微电子、液晶显示等领域的精密对准任务。在本项目中,它与机器视觉软件Halcon相结合,通过C#编程语言进行控制和交互,实现自动化的工作流程。下面将详细介绍这个主题的几个关键知识点。 1. **uvw对位平台**: uvw对位平台是一种三轴精密运动平台,能够实现X(水平)、Y(垂直)和Z(轴向)的精确移动。它通常配备高精度的伺服电机或步进电机,以及精密的反馈系统,如光栅尺或编码器,确保定位的准确性。在半导体制造和检测过程中,这种平台用于精确对齐和放置晶圆、掩模或其他微小部件。 2. **Halcon机器视觉软件**: Halcon是由MVTec公司开发的一种强大的机器视觉软件,提供了丰富的图像处理算法,包括形状匹配、模板匹配、1D/2D码识别、测量、缺陷检测等功能。在这个项目中,Halcon被用于处理摄像头捕获的图像,执行对位任务,如识别目标物体的位置、形状和特征,为uvw对位平台提供对准指令。 3. **C#编程语言**: C#是微软开发的一种面向对象的编程语言,广泛应用于Windows平台的软件开发。在本项目中,C#被用来编写控制程序,实现Halcon与uvw对位平台的通信。开发者可以利用.NET框架中的类库,如System.IO.Ports来控制串口通信,或者使用OPC(OLE for Process Control)技术来与硬件设备进行数据交换。 4. **联合编程**: 联合编程指的是将不同的技术和工具整合到一个系统中,以实现特定的目标。在这个案例中,C#代码调用Halcon的接口函数,处理视觉任务,然后根据处理结果发送指令给uvw对位平台。这种联合编程方式可以实现高效、自动化的生产线操作。 5. **源代码(sorce)**: 压缩包中的`sorce`可能是指源代码文件,包含了实现这个系统的C#代码和可能的配置文件。这些文件是理解整个系统工作原理的关键,通过阅读和分析源代码,学习者可以了解如何集成Halcon与uvw对位平台,以及如何编写控制程序。 总结来说,这个项目展示了如何利用现代技术,如机器视觉和高级编程,来提高工业生产中的精度和效率。通过学习这个案例,开发者可以掌握如何结合C#编程、Halcon视觉算法和精密运动控制,为自己的应用创建类似的解决方案。
2025-11-05 21:22:15 33KB 编程语言
1
本次提供的 halcon DeepLearningTool 是机器视觉软件 HALCON 集成的深度学习工具包,专为工业视觉检测场景设计,提供从数据标注、模型训练到推理部署的全流程深度学习开发支持。该工具包基于 HALCON 的机器视觉算法体系,内置多种预训练模型(如目标检测、图像分类、语义分割等),支持自定义数据集训练,可快速构建适用于缺陷检测、物体识别、字符识别等工业场景的深度学习解决方案。 工具核心功能包括:可视化数据标注工具(支持矩形框、像素级分割等标注方式)、模型训练引擎(支持迁移学习、增量训练,兼容 CPU/GPU 加速)、模型评估模块(提供准确率、召回率等量化指标)以及轻量化推理接口(可直接集成到生产环境)。同时支持与 HALCON 传统视觉算子结合,实现 "深度学习 + 传统算法" 的混合检测方案,兼顾检测精度与效率。 适用人群主要为工业机器视觉领域的算法工程师、自动化设备开发人员、智能制造企业的技术研发人员,以及高校从事机器视觉研究的师生,尤其适合需要快速将深度学习技术应用于工业检测场景的团队。 使用场景涵盖:电子制造业中的 PCB 板缺陷检测、汽车零部件表面瑕疵识别、包装行业的标签字符识别、物流领域的包裹分拣分类、医药行业的药瓶外观检测等。通过该工具,开发者可大幅缩短深度学习模型的开发周期,降低工业视觉系统的部署门槛。 其他说明:使用前需确保已安装对应版本的 HALCON 基础软件;工具包提供 C++、C#、Python 等多语言接口,方便集成到不同开发环境;建议搭配 HALCON 官方的深度学习示例数据集进行入门学习;部分高级功能(如自定义网络结构)需要具备一定的深度学习理论基础;工业场景中需注意图像采集质量对模型效果的影响,建议配合专业光学系统使用;技术问题可参考 HALCON 官方文档或 CSDN 社区的工业深度学习实践案例。
2025-10-28 22:50:30 760.64MB HALCON
1
【深度学习通用框架】基于Halcon+Qt开发的仿康耐视VIDI的通用深度学习框架软件,全套源码,开箱即用 基于Halcon20.11+QT5.12+VS2017开发,目标检测,语义分割和图片分类都已经工具化并且可可根据项目需要任意配置,各个深度学习工具的标注,训练,数据集,图片集,模型参数,结果筛选等等都已完成,并已实际应用于工业外观检测项目。 和康耐视VIDI一样,在软件里搭建好流程逻辑,标注训练好,保存工程,然后在C#里调用DLL加载工程就好。 基于Halcon+Qt开发的仿康耐视VIDI的通用深度学习框架软件,提供了软件的开发环境、功能特点、应用场景等信息。 资源介绍:https://blog.csdn.net/m0_37302966/article/details/139802174
2025-10-26 05:07:13 60.19MB Halcon VIDI
1
在计算机视觉领域,Halcon是一种广泛应用的机器视觉软件,它提供了丰富的图像处理功能,包括对深度数据的处理。本文将详细讲解如何使用Halcon将深度图转换为伪彩色图像,以便于观察和分析。 深度图是3D视觉系统中一个重要的组成部分,它记录了每个像素在空间中的距离信息。通常,深度图以灰度图像的形式呈现,颜色深浅代表距离远近。然而,这种表示方式可能不易于直观理解。为了使深度信息更易读,我们可以将其转化为伪彩色图像,通过不同颜色来区分不同的深度层次。 1. **深度图的理解与获取**:我们需要理解深度图的原理和生成方式。深度图通常是通过结构光、双目视觉或TOF(Time-of-Flight)等技术获取的。在Halcon中,这些数据可以通过对应的相机接口读取,例如3D相机或者通过点云数据导入。 2. **Halcon中的图像处理**:Halcon提供了多种图像处理函数,如`importImage()`用于导入深度图数据,`genColorImage()`可以将灰度图像转换为彩色图像。在处理深度图时,我们需要先将深度值映射到颜色空间,这通常涉及`scaleData()`函数进行数值缩放,确保深度范围适应颜色映射。 3. **颜色映射**:颜色映射是将深度值转换为颜色的关键步骤。可以使用`createColorMap()`创建自定义的颜色映射表,根据需要设置颜色的分布,例如使用彩虹色(红-黄-绿-蓝-紫)来表示从小到大的深度变化。此外,还可以使用预定义的颜色映射,如灰度、热力图等。 4. **应用颜色映射**:使用`applyColorMap()`函数将深度图与颜色映射相结合,生成伪彩色图像。这个函数会根据深度值在颜色映射表中的位置,为每个像素赋予对应的颜色。 5. **显示与保存结果**:可以使用`displayImage()`在Halcon视图窗口显示生成的伪彩色图像,同时用`saveImage()`函数将其保存为图片文件,如.jpg或.png格式,以便于后续分析或分享。 6. **实际应用**:这种转换在很多场景下都有应用,如机器人导航、物体检测和3D重建等。通过伪彩色图像,我们可以更容易地识别物体的边缘、轮廓和深度变化,提高视觉分析的效率。 总结来说,Halcon的深度图转伪彩色过程涉及深度图的获取、数值处理、颜色映射和图像转换。理解并掌握这一技术,有助于我们在实际项目中更好地利用深度信息,实现更精确的图像理解和处理。在实践过程中,需要根据具体需求调整颜色映射策略,以达到最佳的视觉效果和分析目的。
2025-10-23 22:33:08 25.46MB
1
Halcon深度图渲染
2025-10-23 22:32:30 1KB Halcon
1
虚拟仪器软件开发环境——LabWindows/CVI 6.0 编程指南 304 9.3 仪器驱动程序开发 在设计、组建自动测试系统中,仪器的编程是一个系统中 费时费力的部分。系统中 的仪器可能由各个仪器供应厂家提供,而且系统设计人员对所有的仪器既需要完成底层的 仪器 I/O 操作,又需要完成高层的仪器交互能力,这大大增加了系统集成人员的负担。因 此仪器用户总是设法将仪器编程结构化、模块化以使控制特定仪器的程序能重复使用。因 此,一方面,对仪器编程语言提出了标准化的要求;另一方面,需要定义一层具有独立性 的模块化仪器操作程序,亦即具有相对独立性的仪器驱动程序。 随着虚拟仪器的出现,软件在仪器中的地位越来越重要,将仪器的编程完全留给用户 的传统方法也越来越与仪器的标准化、模块化趋势不符。I/O 接口软件作为一层独立软件 的出现,也使仪器编程任务划分。人们将处理与一特定仪器进行控制和通讯的一层较抽象 的软件定义为仪器驱动程序。更明确地说,仪器驱动程序就是一系列带有图形面板的高层 函数,它把诸如数据格式化、与 GPIB、VXI 等总线通信等低层操作包装成为直观的高层函 数,方便用户编程。仪器驱动程序一般是控制物理仪器的,但也有的是纯软件工具。 VXIplug&play 规范作为 VXI 总线系统软件级的标准,详细地规定了符合 VXI 总线即插 即用规范的虚拟仪器系统的仪器驱动程序的结构与设计,即 VPP 规范中的 VPP3.1~VPP3.4。 在这些规范中明确了仪器驱动程序的概念:仪器驱动程序是一套可被用户调用的子程序, 利用它就不必了解每个仪器的编程协议和具体编程步骤,只需调用相应的一些函数就可以 完成对仪器各种功能的操作,并且对仪器驱动程序的结构、功能及接口开发等作了详细规 定。这样,使用仪器驱动程序就可以大大简化仪器控制及测试程序的开发。 在这一节中,我们将以哈尔滨工业大学自动化测试与控制研究所研制的 64 路开关模 块(HITC301)为例,详细介绍开发仪器驱动程序的过程。驱动程序开发过程的每一步都 严格遵守 VPP 规范的要求, 终形成 VXIplug&play 仪器驱动程序。读者开发其它仪器的 驱动程序时,可以参照此开发过程,编写符合虚拟仪器领域软件规范的驱动程序。 9.3.1 VPP 仪器驱动程序模型 VPP 仪器驱动程序要求具有兼容性、一致性和开放性。VPP 规范对仪器驱动程序的要 求不仅适用于 VXI 仪器,也同样适用于 GPIB 仪器、串行口仪器。VPP 规范规定了仪器驱动 程序统一的设计实现方法,使用户在理解了一个仪器驱动程序之后,可以利用仪器驱动程 序的一致性,方便而有效地理解另一个仪器驱动程序。 为了达到此目标,VPP 规范提出了仪器驱动程序的两个基本结构模型,VPP 仪器驱动 程序都是围绕这两个模型编写的。 一、外部接口模型 仪器驱动程序的外部接口模型如图 9-2 所示,它表示了仪器驱动程序如何与外部软件 系统接口。 外部接口模型共分为五个部分。
2025-10-15 16:04:35 4.98MB
1
内容概要:本文详细介绍了利用OV5640摄像头进行图像采集并通过HDMI显示的技术实现过程。具体步骤包括使用Verilog代码配置摄像头、将图像数据通过AXI4总线传输至DDR3内存以及从DDR3读取数据并在HDMI显示器上呈现。文中还探讨了关键模块如FIFO缓存、AXI总线控制器状态机的设计细节,解决了诸如时钟分频、跨时钟域数据传输等问题。此外,文章提到了双缓冲机制的应用以避免图像撕裂现象,并讨论了DDR3延迟导致的问题及其解决方案。 适合人群:熟悉FPGA开发和Verilog编程的硬件工程师,尤其是对图像处理感兴趣的开发者。 使用场景及目标:适用于需要深入了解图像采集与显示系统的硬件工程师,旨在掌握OV5640摄像头与Xilinx FPGA配合使用的完整流程和技术要点。 其他说明:文章不仅提供了详细的代码片段,还分享了作者的实际经验,如遇到的具体问题及解决方法,有助于读者更好地理解和实践相关技术。
2025-10-14 15:18:06 4.13MB FPGA Verilog 图像处理 DDR3
1
内容概要:本文详细介绍了基于Xilinx 7系列FPGA的图像采集与显示系统的实现过程。系统采用OV5640摄像头进行图像采集,通过I2C配置摄像头的工作模式,将RGB565格式的图像数据经由AXI4总线传输并存储到DDR3内存中,最后通过HDMI接口输出到显示器。文中涵盖了各个模块的具体实现,如I2C配置、AXI4总线写操作、DDR3突发传输、HDMI时序生成以及跨时钟域处理等关键技术点。同时,作者分享了调试过程中遇到的问题及其解决方案,确保系统的稳定性和高效性。 适合人群:具备一定FPGA开发经验的硬件工程师和技术爱好者。 使用场景及目标:适用于嵌入式系统开发、图像处理、机器视觉等领域,旨在帮助读者理解和掌握基于FPGA的图像采集与显示系统的完整实现过程。 其他说明:文中提供了详细的Verilog代码片段和调试建议,有助于读者快速上手并在实践中解决问题。此外,还提到了一些常见的错误及优化方法,如跨时钟域处理、DDR3读写仲裁、HDMI时钟生成等。
2025-10-14 15:10:48 2.46MB
1