CSDN Matlab武动乾坤上传的资料均有对应的代码,代码均可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-06-03 09:42:56 8KB matlab
1
遗传算法是一种模拟自然选择和遗传学原理的搜索优化算法。在工程和科学领域,遗传算法被广泛应用于解决优化问题,其中包括布阵技术。布阵技术涉及将一定数量的元素,如天线、传感器或其他设备,按照特定的几何模式和要求进行排列,以达到特定的性能目标。 MATLAB作为一种高级数学计算和可视化软件,提供了强大的工具箱,其中遗传算法工具箱可以用于解决各种优化问题。在稀布阵列天线的设计中,遗传算法可以用于寻找最佳或近似最佳的天线元素位置,从而使得整个天线阵列的性能(如方向图、带宽、增益等)达到预定的要求。 《基于MATLAB的遗传算法及其在稀布阵列天线中的应用(第2版)》源程序文件名暗示了该文档是一本关于如何将遗传算法应用于稀布阵列天线设计的书籍的源代码。这份文档可能会包含以下几个方面的内容: 1. 遗传算法的基本原理和运作机制,包括选择、交叉、变异等操作。 2. 如何将遗传算法的概念应用于天线阵列设计中的具体问题,如如何定义优化目标函数和约束条件。 3. 针对稀布阵列天线设计问题,如何设置遗传算法的参数,如种群大小、代数、交叉率和变异率等。 4. 案例研究,展示如何使用MATLAB实现遗传算法,并将其应用于特定的天线阵列布阵问题。 5. 详细的MATLAB源代码及其注释,帮助读者理解算法的实现过程。 6. 对遗传算法优化结果的分析和讨论,以及如何根据设计目标评估天线阵列性能。 7. 可能还会包括如何将遗传算法与其他算法结合,以进一步提高优化效果等内容。 通过使用MATLAB的遗传算法工具箱,工程师和技术人员可以更加方便地解决复杂的布阵问题,并且能够针对不同应用场景快速地调整算法参数,以实现天线阵列性能的最优化。
2025-05-29 17:24:39 56KB
1
1、资源内容:基于Matlab遗传算法设计PID控制器(源码).rar 2、适用人群:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计,作为“参考资料”使用。 3、解压说明:本资源需要电脑端使用WinRAR、7zip等解压工具进行解压,没有解压工具的自行百度下载即可。 4、免责声明:本资源作为“参考资料”而不是“定制需求”,代码只能作为参考,不能完全复制照搬。不一定能够满足所有人的需求,需要有一定的基础能够看懂代码,能够自行调试代码并解决报错,能够自行添加功能修改代码。由于作者大厂工作较忙,不提供答疑服务,如不存在资源缺失问题概不负责,谢谢理解。
2024-05-21 17:54:17 237KB matlab
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-05-16 15:50:58 1.88MB matlab
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-05-03 21:15:38 1.84MB matlab
1
遗传算法及基于该算法的典型问题的求解实践,包括博文涉及的所有仿真及其结果,另外为害怕乱码,还将代码复制到了txt中。
2024-04-09 15:17:00 14KB matlab 遗传算法 旅行商问题 调度问题
1
NSGA-2是遗传算法的一个改进,该压缩文件中有程序说明,是外国人编写的程序,可以运行 NSGA-2是遗传算法的一个改进,该压缩文件中有程序说明,是外国人编写的程序,可以运行
2024-03-03 17:05:30 160KB NSGA matlab 遗传算法
1
常见的图形算法主要有以下几种:栅格法,拓扑法,自由空间法和可视法。栅格法根据特定分辨率将外部环境离散为相同大小的网格。每个栅格由状态表示,即占用状态和空闲状态,指示栅格位置是否是障碍物。路径规划算法占用一个栅格,并通过搜索自由栅格并避开障碍物来规划由多个栅格组成的路径。拓扑方法将机器人的工作环境图规划成几个小空间,并通过小空间之间的连接线建立拓扑网络结构,路径规划算法搜索拓扑网络以规划由拓扑连接线组成的路径。自由空间法将实际环境规划成两个区域,即可移动区域和不可移动障碍区域。组合连接可移动区域中每个线段的中点形成地图模型,移动机器人在其中进行路径规划。视觉方法将初始位置,障碍的各个转折点和目的地两两相连,组成多线段路径结构。通过路径规划算法,可以在这些线段上规划从起始位置到目的地的完整路径。
2024-02-21 17:56:18 9KB matlab 遗传算法 路径规划 栅格地图
1
遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。(交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。(变异概率) 重复3,4,5步骤,直到新种群(parent_number + child_number)的产生。 循环以上步骤直至找到满意的解。 本资源包含遗传算法+matlab+原理介绍+示例源码
2024-01-16 20:57:49 12KB matlab 遗传算法 源码
1
基于matlab的遗传算法优化,具体模型是火力发电模型
2024-01-15 17:31:27 5KB ;遗传算法 ;matlab matlab遗传算法