本文详细介绍了ADRC(自抗扰控制)的基本原理、结构及其在实际应用中的操作方法。ADRC作为PID控制的升级版,通过TD(跟踪微分器)、ESO(扩张状态观测器)和NLSEF(非线性控制律)三个核心组件,保留了PID的优点并改良了其缺点。文章重点解析了各组件的作用及数学公式,并提供了C语言实现的ADRC程序代码。此外,还详细说明了11个参数的整定方法,包括TD、ESO和NLSEF的参数调整步骤及注意事项。作者结合自身在电机闭环控制中的实践经验,分享了参数整定的技巧和效果验证方法,为读者提供了实用的操作指南。
ADRC,即自抗扰控制技术,是一种先进的控制策略,它对传统的PID控制进行了扩展和优化。ADRC的核心在于融合了跟踪微分器(TD)、扩张状态观测器(ESO)和非线性状态误差反馈(NLSEF)三个主要组成部分。这种控制技术能够有效应对系统的不确定性和外部干扰,使得系统具有更好的鲁棒性和适应性。
在跟踪微分器(TD)方面,它负责提取信号的快速变化部分,同时保留原始信号的平滑特性。通过合理的设计TD,可以确保控制过程中的快速响应和准确跟踪。扩张状态观测器(ESO)则用于观测系统中未建模动态和干扰的实时状态,通过状态反馈机制,ESO能够有效地补偿系统中的未知动态和干扰,从而提供一个接近真实动态的估计。非线性状态误差反馈(NLSEF)则根据系统的误差和ESO的观测值,生成控制量,实现对系统状态的精确控制。
ADRC通过这三个组件的协同工作,不仅继承了PID控制的简洁性和直观性,还大大提升了控制系统的抗干扰能力和适应性。在实际应用中,如电机闭环控制领域,ADRC表现出了优异的性能,通过精确的参数整定,可以实现对电机的高速准确控制。
文章中还详细提供了ADRC的C语言实现代码,这为实际操作提供了极大的便利。作者不仅在代码层面提供了完整的实现,更在理论和实践中深入解析了各组件的作用及其实现的数学原理。特别是对于ADRC的11个参数,作者详细阐述了其整定方法和过程,这包括了TD、ESO和NLSEF参数的调整步骤和注意事项。此外,作者结合自己在电机闭环控制中的实践经验,分享了参数整定的技巧和验证方法,为读者提供了极富价值的操作指南。
自动控制领域中,ADRC自抗扰控制技术的应用不仅限于电机控制,其在航空航天、工业过程控制、汽车电子以及智能机器人等众多领域都有着广泛的应用前景。随着自动化技术的不断发展,ADRC技术作为处理复杂动态系统的重要手段,其研究和应用将会更加深入。
1