此模型展示了如何使用 Simscape Multibody 表示车辆和悬架动力学。 该条目补充了 MATLAB 和 Simulink Racing Lounge 视频“车辆建模,第 4 部分:Simscape Multibody” 该模型提供了系统响应的可视化。 接触力库用于建模轮子和地板之间的接触。 这里的重点是系统级车辆和悬架建模。 享受!
2026-01-19 16:06:47 7.79MB matlab
1
图像分割任务 1.添加分割头:可以在 DINOv3 输出的基础上增加一个解码器或直接添加几个卷积层,构建出适合于分割任务的结构,如 U-Net 或者 FPN。 2.训练分割头:对新增加的分割头进行训练,而保持骨干网络的参数固定。 分割训练示例程序 DINOv3是一个深度学习模型,它在计算机视觉领域中被广泛使用,特别是在图像处理的下游任务中,例如图像分类、目标检测和图像分割等任务。在这些任务中,DINOv3通常被用作特征提取的骨干网络,从而有效地提供对复杂图像数据的深入理解。 当涉及到图像分割任务时,DINOv3可以发挥重要作用。图像分割是计算机视觉中一种将图像分割成多个部分或对象的技术,目的是简化或改变图像的表示形式,使得图像中每个像素都能被赋予一个标签,这些标签表示像素属于特定的对象类别或区域。 为了使用DINOv3进行图像分割,通常需要在DINOv3的输出基础上添加一个解码器,或者直接通过添加几个卷积层来构建适合分割任务的网络结构。这种方法可以被看作是在DINOv3网络上增加了一个“分割头”。常见的结构如U-Net或者FPN(Feature Pyramid Network)等,它们能够有效地将从DINOv3骨干网络提取的高级特征进行进一步的处理,生成图像的像素级分类。 训练分割头涉及的步骤是在保持骨干网络参数不变的情况下,单独对新增加的分割头进行训练。这样可以确保已经训练好的DINOv3骨干网络的特征提取能力不会因训练分割头而受到影响。在训练过程中,一般需要大量的标注数据作为监督信息,以确保分割模型能够准确地识别并分割图像中的不同区域。 分割训练示例程序可能包括了数据加载、预处理、模型定义、损失函数计算、优化器选择、训练循环和验证等步骤。在此过程中,DINOv3骨干网络及其分割头的参数会被调整以最小化预测与真实标签之间的差异。随着训练的进行,分割模型的性能将会逐步提高,直到满足预定的评价标准。 分割模型的最终目标是在不同的应用场景中都能够准确地对图像进行分割,例如在医学图像分析中识别不同类型的组织,在自动驾驶中检测道路边界和行人,在卫星图像中识别建筑物和植被等。通过使用DINOv3,研究人员和开发人员可以构建出能够处理复杂视觉任务的强大模型。 此外,DINOv3在适应不同的图像分割任务方面显示出灵活性。例如,它可以被调整为处理不同的图像尺寸、类别数量以及不同的分割精度要求。通过微调网络结构和训练策略,可以优化DINOv3以适应特定应用的需求。 DINOv3作为一个强大的特征提取骨干网络,在图像分割等下游任务中表现出色。通过在其基础上增加分割头,并进行适应性训练,可以有效地解决各种图像分割问题,大大扩展了DINOv3的应用范围。
2026-01-19 10:45:10 16KB
1
功能特点 标定功能: 圆形标定:使用已知半径的圆形物体进行标定 矩形标定:使用已知尺寸的矩形物体进行标定 自定义标定:支持自定义物体标定(开发中) 测量功能: 圆形测量:测量圆形零件的半径 矩形测量:测量矩形零件的长度和宽度 支持与期望尺寸比较,计算误差 支持保存测量结果 输入方式: 图片输入:上传图片进行标定或测量 摄像头输入:使用摄像头实时捕获图像进行标定或测量 安装说明 确保已安装Python 3.7或更高版本 克隆或下载本项目到本地 安装依赖包: pip install -r requirements.txt 使用方法 运行应用: streamlit run app.py 在浏览器中打开显示的URL(通常是http://localhost:8501) 使用流程: 用户登录: 首次使用需要注册账号 使用已有账号登录系统 根据用户权限访问相应功能 首先进行标定: 图片模式:选择"标定"模式,上传标定图片,输入实际尺寸,点击"开始标定" 摄像头模式:选择"标定"模式,点击"打开摄像头",调整物体位置,输入实际尺寸,点击"开始标定" 然后进行测量: 图片模式:选择"测量"模式,上传测量图片,输入期望尺寸,点击"开始测量" 摄像头模式:选择"测量"模式,点击"打开摄像头",调整物体位置,输入期望尺寸,点击"开始测量" 查看测量结果,可选择保存结果 文件结构 app.py:主应用程序 auth.py:用户认证和权限管理模块 home_page.py:首页界面和导航模块 image_processing.py:图像处理模块 camera_utils.py:摄像头操作和图像采集 text_utils.py:文本处理和格式化 requirements.txt:依赖包列表 calibration/:存储标定数据 results/:存储测量结果 users/:用户数据和配置文件存储
1
在当今计算机视觉领域,深度学习模型已经成为了图像处理的核心技术之一。其中,YOLO(You Only Look Once)模型作为一种高效的实时目标检测算法,一直受到广泛的关注和应用。YOLO模型以其快速和准确的特性,在目标检测任务中表现出色。而随着模型的发展,YOLO的变种如YOLO11n-seg模型,更是将目标检测与图像分割的能力相结合,进一步提升了处理复杂图像场景的能力。 在实际应用中,尤其是在C++这样的系统级编程语言环境中,高效地利用深度学习模型进行图像处理是一项挑战。OpenCV作为一个开源的计算机视觉和机器学习软件库,为开发者提供了丰富的工具和接口。OpenCV版本4.10.0中引入的dnn模块,让开发者能够直接加载预训练的深度学习模型,如ONNX(Open Neural Network Exchange)格式的模型文件,并在本地系统上进行推理。 在这样的背景下,源码“yolo11n-seg.onnx模型在C++ OpenCV4.10.0dnn模块下进行分割并绘制分割区域”的出现,无疑为那些希望利用YOLO11n-seg模型进行图像分割的开发者提供了一个便利的工具。该源码展示如何加载YOLO11n-seg模型,并通过OpenCV的dnn模块在C++环境中进行图像处理。源码不仅包括模型加载和推理的过程,更重要的是展示了如何从模型的输出中提取分割区域,并将这些区域在原始图像上绘制出来。这样的功能对于理解模型输出和进行后续的图像分析工作至关重要。 YOLO11n-seg模型相较于传统的目标检测模型,增加了对像素级理解的能力,它能够识别并区分图像中的每个对象,提供每个像素点的归属信息。这对于分割任务来说至关重要,能够更精确地描绘出图像中不同对象的轮廓。将这一模型应用于实际的计算机视觉项目,可以帮助开发者在视频监控、自动驾驶车辆感知、机器人导航等多个领域实现更为精确的图像理解。 对于进行深度学习和计算机视觉项目的开发者来说,能够直接使用C++和OpenCV进行这样的图像处理任务,具有极大的便利性。因为C++是一种性能优良、运行效率高的编程语言,非常适合进行硬件级的操作和优化。OpenCV库则提供了大量的图像处理功能和算法,这使得开发者能够专注于解决实际问题,而不必从零开始编写基础图像处理代码。特别是dnn模块的引入,极大地简化了在C++环境中利用深度学习模型的过程。 源码示例的发布,反映了社区对共享工具和资源的需求,也展示了开源文化在推动技术发展方面的重要性。通过对源码的阅读和学习,开发者不仅能够理解YOLO11n-seg模型在C++环境中的实现细节,还能够根据自己的项目需求对源码进行修改和扩展。这样的开源共享实践,有助于推动技术社区的共同进步,也为整个行业的创新提供了源源不断的动力。
2026-01-13 11:05:27 7KB yolo
1
.net 开发的web 网页没法进行无预览打印?看看这个方法,通过url协议进行本地客户端调用并且传参进行打印,调用方法:在有url或者跳转的地方写上: printCMCC://参数1-参数2 (上边参数1和参数2中间要有 -) 例如 代码有注释
2026-01-12 22:02:37 126KB .Net 无预览打印 url协议 本地打印
1
在数据分析和机器学习领域,房价预测是一个经典且广泛研究的问题。kaggle作为全球性的数据科学竞赛平台,经常举办各类数据分析比赛,其中房价预测就是其中一个热门的竞赛主题。线性回归是解决这类问题的基础算法之一,其核心思想是通过建立一个或多个自变量与因变量之间的线性关系模型,来预测或评估结果。在房价预测中,线性回归模型可以根据房屋的各种特征,如面积、位置、房间数等,来预测房屋的售价。 在运用线性回归进行kaggle房价预测时,首先需要对数据进行预处理,包括数据清洗、缺失值处理、异常值处理以及特征选择等。数据清洗主要是去除重复记录、纠正错误数据、处理缺失值。缺失值可以通过平均值填充、众数填充或者使用机器学习方法如K-最近邻(K-NN)插补等方法处理。异常值的处理则需要根据实际情况进行,如剔除或修正数据,以保证数据的准确性。 特征选择是为了挑选出对预测结果影响较大的特征,提高模型的准确性和效率。这一步骤可以通过统计分析、相关性分析等方法来完成。在线性回归模型中,特征的重要性可以通过回归系数来体现。高相关性的特征对于模型的解释能力有显著作用。 模型构建是房价预测的核心环节,线性回归模型可以简单表示为y = ax + b的形式,其中y表示房价,x表示影响房价的各种特征向量,a表示特征对应的权重系数,b表示截距项。在实际应用中,可能需要构建多元线性回归模型,即多个自变量与因变量之间的关系,形式为y = a1x1 + a2x2 + ... + anxn + b。在构建模型时,需要注意变量的尺度统一,避免量纲不同导致的计算误差。 模型评估是通过一些统计指标来衡量模型的好坏。常用的评估指标包括决定系数(R²)、均方误差(MSE)、均方根误差(RMSE)等。R²值越接近1,表示模型解释变异的能力越强;MSE和RMSE则用于衡量模型预测误差的大小,值越小表示模型预测越准确。 在kaggle竞赛中,除了上述提到的基本方法之外,还有更多的技巧和策略可以应用,例如模型的集成、参数调优、交叉验证等。模型集成是指将多个模型的预测结果进行综合,以获得比单一模型更好的预测效果。参数调优是通过不同的参数设置来尝试找到最适合当前数据集的模型参数。交叉验证是通过将数据集分成多个子集,训练模型时轮流使用这些子集作为验证集和训练集,以此来评估模型在未知数据上的表现。 在完成模型的训练和评估后,需要将模型提交到kaggle平台,与其他参赛者的模型进行竞争,根据模型在未知数据集上的表现来确定最终的排名。 运用线性回归进行kaggle房价预测涉及到数据预处理、特征选择、模型构建、模型评估以及模型优化等多个步骤。每一步都需要细致的操作和精心的设计,才能在竞争激烈的kaggle比赛中脱颖而出。
2026-01-11 14:42:01 60KB
1
基于Matlab的 变转速时域信号转速提取及阶次分析 将采集的脉冲信号转为转速,并对变转速时域信号进行角域重采样, 包络谱分析后得到阶次结果 以渥太华轴承数据集为分析对象进行展示 程序已调通,可直接运行 ,基于Matlab的转速提取;变转速时域信号;角域重采样;包络谱分析;阶次结果;渥太华轴承数据集;程序调通。,Matlab程序:变转速信号转速提取与阶次分析研究报告 在现代工业监测和故障诊断领域,转速的精确测量和时域信号的阶次分析对于设备状态的评估至关重要。本研究聚焦于利用Matlab软件平台,开发了一套能够从变转速时域信号中提取转速信息,并通过角域重采样和包络谱分析手段,获得信号的阶次结果的方法。具体而言,该研究以渥太华轴承数据集作为分析实例,通过一系列算法处理流程,实现了对信号的有效解析。 研究的首要步骤是将采集到的脉冲信号转换成转速值。这一过程涉及到信号的预处理、去噪以及峰值检测等技术,以便准确捕捉到信号中的转速变化特征。由于信号是在变转速条件下采集的,因此需要对时域信号进行角域重采样,这是为了消除因转速不均匀而导致的信号失真,保证后续分析的准确性。 角域重采样后,研究引入了包络谱分析技术。该技术能够有效地提取信号中的周期性成分,通过分解得到各个阶次的振动信息。对于旋转机械而言,不同阶次的振动特征往往与特定的机械状态相关联,例如轴承的磨损、不平衡等。因此,通过包络谱分析获取的阶次结果对于识别故障和维护机械设备具有重要的参考价值。 渥太华轴承数据集是本研究方法验证的对象。该数据集包含了一系列在不同工作状态下的轴承振动信号,是一个广泛认可的测试平台,常用于机械故障诊断技术的测试与评估。研究通过将Matlab编写的程序应用于该数据集,展示了变转速信号转速提取及阶次分析的有效性和实用性。 程序的开发和调试工作已经完成,意味着用户可以直接运行该程序进行相关分析。这对于那些不具备深厚编程背景的工程师和研究人员而言,大大降低了技术门槛,使得复杂的数据分析工作变得更加简便易行。 在更广泛的应用背景下,该研究的成果不仅限于轴承监测,还可以拓展到其他旋转设备的健康监测和故障诊断中。例如,对于风力发电机、汽车发动机等设备,通过精确的转速提取和阶次分析,可以有效预测设备潜在的故障,从而进行及时的维护和修理,保障设备的稳定运行。 本研究基于Matlab开发的变转速时域信号转速提取及阶次分析方法,为旋转机械的状态监测和故障诊断提供了一种高效、便捷的技术手段。通过渥太华轴承数据集的实例验证,展现了该方法在实际应用中的可行性和可靠性。这不仅有助于提升机械设备的运维效率,还为相关领域研究者和工程师提供了有力的技术支持。
2026-01-10 11:15:31 629KB istio
1
Qt是一个强大的跨平台应用程序开发框架,特别适合于创建图形用户界面。在图像处理方面,Qt提供了丰富的类和函数,使得开发者能够对图片进行各种操作。本文将深入探讨Qt中的图像处理技术,主要基于提供的开源代码"qView-master"。 我们要了解Qt中的QImage类。QImage是Qt中用于存储和操作图像的基本类,支持多种图像格式,如JPEG、PNG、BMP等。通过QImage,你可以加载、保存图像,并进行像素级别的操作。例如,你可以读取图像的像素颜色,修改像素值,甚至进行图像的缩放和旋转。 在"qView-master"这个开源项目中,我们可能会发现以下几种常见的图像操作: 1. **图像加载与显示**:使用QImage的`load()`方法可以加载本地或网络上的图像文件,然后利用QLabel的`setPixmap()`或QWidget的`setGraphicsScene()`方法显示图像。 2. **图像转换**:Qt允许将QImage对象转换为其他格式,如QPixmap,后者更适合在GUI中快速显示。使用`QImage::convertToFormat()`方法可以改变图像的位深度或颜色空间。 3. **图像裁剪**:如果需要从图像中提取一部分,可以使用`QImage::copy()`方法,指定要裁剪的矩形区域。 4. **图像滤波与特效**:Qt提供了基本的图像处理算法,如模糊、锐化、色彩平衡等。这些可以通过遍历图像像素并应用相应算法实现。例如,可以使用`QImage::scanLine()`获取图像的一行像素,然后逐像素进行处理。 5. **图像旋转与翻转**:利用QImage的`rotate()`方法可以进行图像的旋转,`transpose()`和`flip()`方法则可以实现图像的水平或垂直翻转。 6. **自定义绘图**:如果你需要更复杂的图像操作,比如绘制形状、文字或者进行像素级的画图,可以使用QPainter类。通过设置画笔、画刷和绘图路径,可以在QImage上自由绘画。 7. **动画支持**:Qt还支持GIF动画,QMovie类可以用来播放动态图像。 在"qView-master"项目中,可能包含一个图像查看器的应用示例,它实现了上述的一些功能,如平移、缩放、旋转等。开发者可以借此学习如何在Qt环境中实现一个完整的图像处理应用。 Qt的图像处理功能强大且易用,对于任何需要处理图像的Qt应用来说,都是宝贵的资源。"qView-master"这个开源代码库提供了一个很好的起点,帮助开发者理解和实践Qt中的图像处理技术,无论是初学者还是有经验的开发者,都能从中受益。
2026-01-09 00:39:00 1.99MB 图片处理
1
在探讨Qt 5.12.8版本的编译和安装过程中,首先要明确的是,Qt是一个跨平台的C++应用程序框架,广泛用于开发图形用户界面以及各种非GUI程序,它提供了包括窗口工具、对话框、控件、绘图功能等丰富组件。Qt 5.12.8作为该框架的特定版本,它的编译过程和安装方式与之前的版本在很多方面都是一致的,但也有可能因为特定的系统环境或者特殊需求而有所变化。 当提到编译生成的build目录,这通常意味着开发者已经使用了源代码方式安装Qt,并且利用了像qmake这样的构建系统来生成构建目录。这个目录通常包含了用于编译和链接Qt库以及应用程序所需的Makefile文件。在Unix-like系统中,例如Linux或Mac OS X,通常使用make命令来根据Makefile文件编译程序。 make install是Makefile中预定义的一个目标,它的作用是在编译完成后,将编译好的库文件、可执行文件和其他相关文件安装到系统的适当位置。这样做的好处是能够确保文件被放置在标准的库目录中,使得其他程序能够通过标准的查找机制找到Qt的动态库,同时也方便系统的管理和维护。 在实际操作中,要执行make install,开发者首先需要以root用户权限或者使用sudo命令来获取必要的安装权限。这是因为系统目录的写入通常需要管理员权限。安装过程中,make install会将编译好的库文件、头文件、示例程序、文档等安装到指定的目录下,通常是/usr/local/或者系统的标准库目录中。 值得注意的是,直接使用make install进行安装可能不是最佳实践,因为它会覆盖系统中已有的Qt版本,这在多版本共存的环境中可能引起问题。通常推荐的做法是使用包管理器安装Qt,或者使用虚拟环境来隔离不同版本的Qt,这样可以保证系统的稳定性和开发环境的灵活性。 对于想要手动管理Qt安装的开发者来说,他们可以通过配置qmake来指定安装路径,从而避免影响到系统中其他的Qt版本。例如,在使用qmake配置项目时,可以通过修改.qmake.conf文件来设置安装路径。 此外,Qt还提供了一个工具叫做Maintenance Tool,这个工具通常在安装Qt时会随安装程序一起安装。通过这个工具,开发者可以选择安装、删除、修改和更新Qt的组件,这是一个图形化的用户界面,可以方便开发者进行操作。 在处理编译和安装问题时,开发者可能会遇到各种错误,这时需要根据错误信息进行调试。常见的错误包括但不限于编译器版本不兼容、依赖库未安装或版本不正确、权限问题、磁盘空间不足等。解决这些问题需要开发者具有一定的系统知识和开发经验。 对于Qt的编译和安装,始终需要参考官方文档和发布说明。因为Qt作为一个大型的跨平台框架,其安装和配置可能会因为操作系统的不同而有细微的差别,而且随着版本的更新,安装方法和配置选项也可能会有所改变。开发者应该确保自己查看的是对应版本的官方文档,以便得到最准确和最有效的指导。
2026-01-08 10:56:12 945.32MB
1
**JavaScript 代码脱糖:Rascal 示例** 在编程领域,"脱糖"(De-sugaring)是指将高级语言的语法特性转换为低级、更基础的语法形式。JavaScript,作为一种广泛使用的动态脚本语言,提供了许多简洁的语法糖(Syntax Sugar),如箭头函数、模板字符串、解构赋值等。这些语法糖提高了代码的可读性和简洁性,但有时为了理解底层工作原理或在特定环境下兼容性,我们需要对其进行脱糖处理。 Rascal 是一种元编程系统,它提供了一种强大的方式来处理源代码,包括分析、修改和生成代码。在这个“rascal-example”项目中,它被用来展示如何对 JavaScript 代码进行脱糖操作。Rascal 提供了一个强大的抽象语法树(AST,Abstract Syntax Tree)表示,允许开发者以结构化的方式处理代码。 在“rascal-example-master”这个压缩包中,我们预计会找到以下内容: 1. **源代码文件**:包含原始的 JavaScript 代码,这些代码可能使用了各种 ES6 及以上版本的特性。 2. **Rascal 脚本**:Rascal 代码文件,用于解析 JavaScript 代码并执行脱糖操作。这些脚本可能包含 AST 的构建、遍历和转换逻辑。 3. **转换后的代码**:脱糖后的 JavaScript 代码,显示了没有语法糖的形式。 4. **文档**:可能包括关于如何运行 Rascal 脚本和解释脱糖过程的说明。 5. **测试**:如果包含测试,它们可能会验证脱糖过程的正确性,确保转换后的代码仍具有与原始代码相同的功能。 Rascal 的主要优点在于它的灵活性和可扩展性。它不仅可以用于 JavaScript,还可以处理其他编程语言,并且支持自定义的语法分析和变换规则。通过创建和操作 AST,开发者可以实现复杂的代码分析任务,比如性能优化、静态分析检查、代码格式化和重构。 在实际应用中,使用 Rascal 进行代码脱糖可以帮助我们理解 JavaScript 的新特性的实现细节,这对于教学、调试和维护旧代码库特别有用。例如,通过将箭头函数转换为传统的函数表达式,我们可以更好地了解作用域和`this`的绑定。此外,对于那些不支持新语法的老版本 JavaScript 引擎,脱糖后的代码可以提高兼容性。 在深入研究“rascal-example”之前,确保你已经安装了 Rascal 开发环境,包括 Rascal MPL 编译器和相关工具。然后,根据项目文档的指示,运行 Rascal 脚本以解析和转换 JavaScript 代码。比较原始和脱糖后的代码,以观察语法糖如何转化为基本的 JavaScript 结构。 “rascal-example”为我们提供了一个实用的例子,展示了如何利用 Rascal 这样的元编程工具来探索和理解 JavaScript 代码的底层结构,这对于深化对 JavaScript 语言的理解和提升编程技能非常有价值。无论是开发者、教育者还是研究者,都可以从中受益。
2026-01-04 21:46:47 3.22MB JavaScript
1